| Personal | Interests | Projects | Publications |
Tushkanova Olga NickolaevnaTop Patents and ProgrammsPrograms and databases2020- Olga Tushkanova, Andrey Chechulin Component for the classification of social network posts. Certificate No. 2020666209. Registered in the Computer Program Registry 07.12.2020.
Top ProjectsFormer Projects- Andrey Chechulin (Principal Investigator). Grant of Russian Science Foundation ¹ 18-71-10094-P "Monitoring and counteraction to malicious influence in the information space of social networks", 2021-2023 (Researcher).
Top Main publicationsBooks and Chapters in Books- A.F. Volynsky, V.P, Lavrov, T.V. Averyanova, I.A. Arkhipova, A.A. Bokov, N.T. Vedernikov, Yu.V. Gavrilin, A.Yu.Golovin, V.N. Grigoriev, V.A. Zhbankov, A.M. Zinin, Yu.G. Korukhov, A.M. Kustov, V.O. Lapin, N.P. Mailis, T.F. Moiseeva, A.S. Podshibyakin, L.N. Poselskaya, I.V. Tishutina, O.N. Tushkanova, etc. Criminalistics // Textbook for university students / Ser. Law and law. (2nd edition, revised and expanded) Moscow, 2015. 943p. // https://elibrary.ru/item.asp?id=36908316
Papers2024- M. Kolomeets, O. Tushkanova, V. Desnitsky, L. Vitkova, A. Chechulin. Experimental evaluation: can humans recognise social media bots? // Big Data and Cognitive Computing. 2024. Ò. 8. ¹ 3. Ñ. 24. DOI: 10.3390/bdcc8030024 // https://elibrary.ru/item.asp?id=66173046
2023- Dmitry Levshun, Olga Tushkanova, Andrey Chechulin. Two-model active learning approach for inappropriate information classification in social networks // International Journal of Information Security. 2023. Ò. 22. ¹ 6. Ñ. 1921-1936. DOI:10.1007/s10207-023-00726-7 // https://elibrary.ru/item.asp?id=63329930
- O. Tushkanova, D. Levshun, A. Branitskiy, E. Fedorchenko, E. Novikova, I. Kotenko. Detection of Cyberattacks and Anomalies in Cyber-Physical Systems: Approaches, Data Sources, Evaluation // Algorithms, vol. 16, no. 2, 2023, pp. 85. DOI: 10.3390/a16020085.// https://www.elibrary.ru/item.asp?id=60517408
2022- Elena Doynikova, Evgenia Novikova, Ivan Murenin, Maxim Kolomeec, Diana Gaifulina, Olga Tushkanova, Dmitry Levshun, Alexey Meleshko, Igor Kotenko. Security Measuring System for IoT Devices // Lecture Notes in Computer Science. 2022. Ò. 13106 LNCS. Ñ. 256-275. DOI: 10.1007/978-3-030-95484-0_16 // https://elibrary.ru/item.asp?id=48184836
- Dmitry Levshun, Olga Tushkanova, Andrey Chechulin. Active learning approach for inappropriate information classification in social networks // Proceedings of the 30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2022). P. 283-289. DOI: 10.1109/PDP55904.2022.00050. // https://elibrary.ru/item.asp?id=48582978
- E.V. Fedorchenko (Doynikova), E.S. Novikova, I.V. Kotenko, D.A. Gayfulina, O.N. Tushkanova, D.S. Levshun, A.V. Meleshko , I.N. Murenin, M.V. Kolomeets. The security and privacy measuring system for the internet of things devices // Cybersecurity issues. 2022. No. 5 (51). pp. 28-46. DOI: 10.21681/2311-3456-2022-5-28-46 // https://elibrary.ru/item.asp?id=50310106 (in Russian).
- M.V. Kolomiets, L.A. Vitkova, O.N. Tushkanova, A.A. Chechulin. Experimental evaluation: can humans recognize social media bots? // Networks in the Global World 2022, - (2022).
2021- Maxim Kolomeets, Olga Tushkanova, Dmitry Levshun, Andrey Chechulin. Camouflaged bot detection using the friend list // Proceedings - 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021. 29. 2021. Ñ. 253-259. DOI: 10.1109/PDP52278.2021.00048 // https://elibrary.ru/item.asp?id=46047553 (Scopus).
- Olga Tushkanova, Vladimir Gorodetsky. Learning an ontology of text data // Â ñáîðíèêå: CEUR Workshop Proceedings. 10. Ñåð. "IMSC 2021 - Russian Advances in Fuzzy Systems and Soft Computing: Selected Contributions to the 10th International Conference on "Integrated Models and Soft Computing in Artificial Intelligence", Kolomna, May 17-20, 2021 P. 37-44. (Scopus) // https://elibrary.ru/item.asp?id=47511846
- O.N. Tushkanova. Identification of potentially malicious posts on social networks using positive and unlabeled learning on text data // Control systems, communications and security. 2021. No. 6. pp. 30-52. DOI: 10.24412/2410-9916-2021-6-30-52 // https://elibrary.ru/item.asp?id=47416443
(in Russian).
- V.I. Gorodetsky, O.N.Tushkanova. Generation of text data ontology // In the collection: Integrated Models and Soft computing in Artificial Intelligence (IMB-2021). Collection of scientific papers of the Xth International Scientific and Technical Conference. In 2 volumes. Smolensk, 2021. pp. 284-295 // https://elibrary.ru/item.asp?id=46337304 (in Russian).
2020- Lidia Vitkova, Igor Saenko, Olga Tushkanova. An Approach to Creating an Intelligent System for Detecting and Countering Inappropriate Information on the Internet // Studies in Computational Intelligence 2020. Vol. 868 pp. 244-254. https://doi.org/10.1007/978-3-030-32258-8_29. ISSN 1860-949X. // https://elibrary.ru/item.asp?id=43219363
- A. Soboleva, O. Tushkanova. The Methodology of Extraction and Analysis of Event Log Social Graph // Conference of Open Innovations Association, FRUCT. 2020. ¹ 26. P. 415-422 // https://elibrary.ru/item.asp?id=42830762
- Igor Kotenko, Lidiya Vitkova, Igor Saenko, Olga Tushkanova, Alexander Branitskiy. The intelligent system for detection and counteraction of malicious and inappropriate information on the Internet // AI Communications. 2020. Vol. 33 ¹. 1. pp. 13-25. DOI: 10.3233/AIC-200647 // https://elibrary.ru/item.asp?id=45174880 (WoS, Scopus)
- Vladimir Gorodetsky, Olga Tushkanova. Semantic Technologies for Semantic Applications. Part 2. Models of Comparative Text Semantics // Scientific and Technical Information Processing. 2020. Ò. 47. ¹ 6. Ñ. 365-373 DOI: 10.3103/S0147688220060027 (WoS, Scopus) // https://elibrary.ru/item.asp?id=46755444
- Lidia Vitkova, Igor Kotenko, Maxim Kolomeets, Olga Tushkanova, Andrey Chechulin. Hybrid Approach for Bots Detection in Social Networks Based on Topological, Textual and Statistical Features // Conference: 4th International Scientific Conference “Intelligent Information Technologies for Industry”At: Ostrava-Prague, Czech Republic. May 2020 // Advances in Intelligent Systems and Computing, Springer. 2020. vol.1156 AISC . P.412-421. DOI:10.1007/978-3-030-50097-9_42 // https://elibrary.ru/item.asp?id=45439091
- I. B. Paraschuk, V. A. Desnitsky, O. N. Tushkanova. Model of the digital content parental control system on the Internet // XVII St. Petersburg International Conference " Regional Informatics (RI-2020)". St. Petersburg, October 28-30, 2020, part 1., pp. 168-170 http://www.spoisu.ru/files/ri/ri2020/ri2020_materials_1.pdf // https://www.elibrary.ru/item.asp?id=49390765
(in Russian).
2019- V. Gorodetsky, O. Tushkanova. Semantic Technologies for Semantic Applications. Part 1. Basic Components of Semantic Technologies // Scientific and Technical Information Processing, Vol..46 ¹ 5, Ð.306-313 DOI: 10.3103/S0147688219050022 // https://elibrary.ru/item.asp?id=43267255
- Olga Tushkanova, Vladimir Samoylov. Knowledge Net: Model and System for Accumulation, Representation, and Use of Knowledge // IFAC-PapersOnLine. 9th IFAC Conference on Manufacturing Modelling, Management and Control, MIM 2019. 2019. Ñ. 1150-1155. // https://elibrary.ru/item.asp?id=43250613
- Vladimir Gorodetsky, Olga Tushkanova. Semantic technologies for semantic applications. Part 2. Models of comparative text semantics // Artificial Intelligence and Decision Making. 2019.No 1. C. 49-61. (VAK, RSCI, impact factor - 0.74). DOI 10.14357 / 20718594190105 // https://elibrary.ru/item.asp?id=37179703
(in Russian).
- Dmitry Kudryavtsev, Alena Begler, Tatiana Gavrilova, Irina Leshcheva, Miroslav Kubelsky, Olga Tushkanova. Method for collaborative visual creation of a knowledge graph // Artificial Intelligence and Decision Making. 2019.No 1. P. 27-38. (VAK, RSCI, impact factor - 0.74). DOI 10.14357 / 20718594190103 // https://elibrary.ru/item.asp?id=37179701 (in Russian).
- Olga Tushkanova, Vladimir Samoylov. Knowledge Net: model and system for accumulation, representation and use of knowledge and data. Ontology of designing. 2019; Vol. 9. ¹ 1 (31) P. 117-131. (VAK, RSCI). DOI: 10.18287/2223-9537-2019-9-1-117-131 // https://elibrary.ru/item.asp?id=37627844 (in Russian).
- Igor Kotenko, Olga Tushkanova. A version of the system architecture for analyzing information objects on the Internet using parallel computing // VIII International Scientific-Technical and Scientific-Methodological Conference "Actual Problems of Information Telecommunications in Science and Education" (APINO 2019). 2019. vol. 1. pp. 577-580. https://www.sut.ru/doci/nauka/1AEA/APINO/8-APINO%202019.%20Ò.1.pdf // https://elibrary.ru/item.asp?id=41383598
(in Russian).
- Olga Tushkanova, Igor Saenko. The Technique of ensuring timeliness of multiclass classification of inappropriate information on the Internet using parallel computing // XI St. Petersburg Interregional Conference «Information Security of Russian Regions», October 23-25, 2019, Russia, St. Petersburg. 2019. pp. 153-155. http://www.spoisu.ru/files/ibrr/ibrr2019/ibrr2019_materials.pdf // https://elibrary.ru/item.asp?id=45842703
(in Russian).
2018- D. Kudryavtsev, T. Gavrilova, I. Leshcheva, A. Begler, M. Kubelskiy, O. Tushkanova. Mind mapping and spreadsheets in collaborative design of knowledge graphs // CEUR Workshop Proceedings. 17, Business Resilience - Organizational and Information System Resilience in Congruence. Ñåð. "BIR-WS 2018 - Joint Proceedings of the BIR 2018 Short Papers, Workshops and Doctoral Consortium, co-located with 17th International Conference Perspectives in Business Informatics Research, BIR 2018" 2018. Ñ. 82-93 // https://elibrary.ru/item.asp?id=38646475
- D.V. Kudryavtsev, T.A. Gavrilova, I.A. Leshcheva, A. Begler, M. Kubelski, O. Tushkanova. A method for collaborative visual creation of a knowledge graph // GSOM EMERGING MARKETS CONFERENCE 2018. Conference Proceedings. Graduate School of Management, Saint Petersburg University. 2018. Ñ. 98-102. // https://elibrary.ru/item.asp?id=41821719
- Vladimir Gorodetski, Olga Tushkanova. Semantic technologies for semantic application. Part 1. Basic components of semantic technologies // Artificial Intelligence and Decision Making. 2018. No.4. P.61-71 DOI: 10.14357/20718594180406 // https://elibrary.ru/item.asp?id=36643713
(in Russian).
- V.I. Gorodetsky, O.N. Tushkanova. Semantic technologies for semantic applications. Part 1. Basic components of semantic technologies // Artificial intelligence and decision-making. 2018. No. 4. pp. 61-71. DOI: 10.14357/20718594180406 // https://elibrary.ru/item.asp?id=36643713 (in Russian).
- V.I. Gorodetsky, O.N. Tushkanova. Semantic computing and big data // Materials of the plenary sessions of the 11th Russian Multi-conference on management problems. St. Petersburg: JSC "Concern" Central Research Institute "Electropribor", 2018, p. 55-71 // https://elibrary.ru/item.asp?id=36591593 (in Russian).
- D.V. Kudryavtsev, T.A. Gavrilova, I.A. Leshcheva, A.M. Begler, M.V. Kubelsky, O.N. Tushkanova. Methodology of group work on visual development of the knowledge graph // In the collection: The Sixteenth National Conference on Artificial Intelligence with international participation CII-2018. Proceedings of the conference: in 2 volumes. 2018. pp. 53-60. // https://elibrary.ru/item.asp?id=35568575 (in Russian).
2016- Gorodetsky V.I., Tushkanova O.N. Effective Big Data Processing Techniques for Decision Making // In the collection: The 9th Russian Multi-conference on Management Problems. materials of the plenary sessions. SSC RF JSC "Concern "Central Research Institute "Electropribor". 2016. pp. 74-96. // https://elibrary.ru/item.asp?id=26797583 (in Russian).
- V.I. Gorodetsky, O.N. Tushkanova. Big data technology // In the book: Promising directions of development of domestic information technologies. materials of the II interregional scientific and practical conference. Sevastopol State University; scientific ed. by B.V. Sokolov. 2016. pp. 15-17. // https://elibrary.ru/item.asp?id=27558832 (in Russian).
2015- O. Tushkanova. Comparative analysis of the numerical measures for mining associative and causal relationships in big data // Communications in Computer and Information Science. 2015. Ò. 535. Ñ. 571-582 DOI: 10.1007/978-3-319-23766-4_45 // https://elibrary.ru/item.asp?id=26927658
- V. Gorodetsky, V. Samoylov, O. Tushkanova. Agent-based customer profile learning in 3G recommender systems: ontology-driven multi-source cross-domain case // Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science). 2015. Ñ. 12-25. DOI: 10.1007/978-3-319-20230-3-2 // https://elibrary.ru/item.asp?id=23992803
- V. Gorodetsky, O. Tushkanova. Data-driven semantic concept analysis for user profile learning in 3G recommender systems // Proceedings - 2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015. Big Data in Global Brain and Social Networks. 2015. Ñ. 92-97 DOI: 10.1109/WI-IAT.2015.80 // https://elibrary.ru/item.asp?id=27153946
- O. Tushkanova, V. Gorodetsky. Data-driven semantic concept analysis for automatic actionable ontology design // Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015. 2015. Ñ. 7344893 DOI: 10.1109/DSAA.2015.7344893 // https://elibrary.ru/item.asp?id=26996462
- O.N. Tushkanova, V.I. Gorodetsky. Associative classification: analytical overview. Part 1 // Proceedings of SPIIRAN. 2015. No. 1 (38). pp. 183-203. // https://elibrary.ru/item.asp?id=23342080 (in Russian).
- Tushkanova O.N., Gorodetsky V.I. Associative classification: analytical overview. Part 2// Proceedings of SPIIRAN. 2015. No. 2 (39). pp. 212-240. // https://elibrary.ru/item.asp?id=23388656 (in Russian).
- O.N. Tushkanova. Experimental study of the numerical measures for mining associative and causal relationship in big data // Information technologies and computing systems. 2015. No. 3. pp. 23-32. // https://elibrary.ru/item.asp?id=25032417 (in Russian).
2014- V.I. Gorodetsky, O.N. Tushkanova. Ontology-based user profile personification in 3g recommender systems // Design ontology. 2014. No. 3 (13). pp. 7-31. // https://elibrary.ru/item.asp?id=21884863 (in Russian).
2012- N.V. Tushkanov, O.N. Tushkanova. Procedures of collective learning and self-organization in multisensory and multi-agent systems // In the collection: The 5th Russian Multi-conference on Management Problems. materials of the conference "Information Technologies in Management" (ITU-2012). 2012. pp. 253-258 // https://elibrary.ru/item.asp?id=21718380 (in Russian).
2011- N. Tushkanov, O. Tushkanova, V. Nazarov, A. Kuznetsova. Multi-sensor system of intellectual handling robot control on the basis of collective learning paradigm // Advances in Intelligent and Soft Computing. 2011. Ò. 123. Ñ. 195-200. DOI: 10.1007/978-3-642-25661-5_26 // https://elibrary.ru/item.asp?id=18031742
- N.B. Tushkanov, A.V. Kuznetsova, V.A. Nazarov, O.N. Tushkanova, D.A. Lyubvin. Construction of multisensory systems of collective control and recognition // News of higher educational institutions. Electromechanics. 2011. No. 1. pp. 54-62. // https://elibrary.ru/item.asp?id=16209770 (in Russian).
Top |
|