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Abstract. The paper presents an approach and formal framework for modeling 
attacks against computer network and its software implementation on the basis 
of a multi-agent architecture. The model of an attack is considered as a complex 
process of contest of adversary entities those are malefactor or team of 
malefactors, on the one hand, and network security system implementing a 
security policy, on the other hand. The paper focuses on the conceptual 
justification of the chosen approach, specification of the basic components 
composing attack model, formal frameworks for specification of the above 
components and their interaction in simulation procedure. The peculiarities of 
the developed approach are the followings: (1) malefactor's intention-centric 
attack modeling; (2) multi-level attack specification; (3) ontology-based 
distributed attack model structuring; (4) attributed stochastic LL(2) context-free 
grammar for formal specification of attack scenarios and its components 
(“simple attacks”); (5) using operation of formal grammar substitution for 
specification of multi-level structure of attacks; (6) state machine-based formal 
grammar framework implementation; (7) on-line generation of the malefactor’s 
activity resulting from the reaction of the attacked network security system.  

1   Introduction  

Attacks against computer network form one of the many other dimensions of 
cyber terrorism and therefore detection of such attacks and prevention of their 
harmful effects have recently become the task of great concern. It is undoubtedly that 
substantial increase of Intrusion Detection System (IDS) efficiency could be achieved 
in case of using knowledge resulting from generalization and formalization of the 
accumulated experience with regard to computer attacks [28]. A lot of such data is 
hitherto accumulated and systematized in the form of taxonomies and attack 
languages ([2], [30], [38], etc.). Nevertheless, there are no serious attempts to 
generalize the accumulated data in order to develop a mathematical model of a wide 
spectrum of attacks and use this model for attack simulation. Perhaps this is due to the 
extreme complexity of the network attack and computer networks from modeling 
perspective: “there is no widely accepted information physics that would allow 
making an accurate model”, and the network attacks are “so complex that we cannot 
describe them with any reasonable degree of accuracy” [5].  



 

Attack formal model could be a powerful source of knowledge needed for IDSs 
development. It could provide for deeper study and understanding of the essence and 
peculiarities of attacks (intentions of malefactors, attack objects, structures and 
strategies of attacks, etc.). This model would play an important role in IDS learning 
both known and of unknown attacks if it were used as a generator of training and 
testing samples of attacks. Finally, formal model of attacks and attack simulation tool 
could be used as a testbed for security policy validation, i.e. for testing, comparing 
and evaluating of IDS components and IDS on the whole.  

Development of such a model, its formal specification and implementation issues 
are the subjects of research in this paper. The rest of the paper is structured as follows. 
Section 2 outlines conceptual aspects and general strategy of attack modeling and 
describes definitions of basic notions composing an attack specification. Section 3 
describes the developed ontology of the problem domain “Computer network attacks” 
which is considered further as a basis for consistent attack specification. Section 4 
gives an outline of the proposed formal grammar framework for specification of 
attacks and exemplifies such specifications for several classes of attacks. Section 5 
describes the model of the “counterparty” of attacks, i.e. model of the attacked 
computer network. Section 6 presents architecture of the Attack simulation tool and 
its implementation issues. Section 7 gives an overview of related works. Section 8 
summarizes the main results of the paper.  

2   Attack Modeling Strategy  

The computer network attacks concern to the class of complex systems possessing 
such features as large scale, multi-connectivity of elements, diversity of their 
connections, variability of structure, multiplicity of executed functions and structural 
redundancy. An attack model is understood as a formal object having a likeness in 
basic properties with regard to real-life attacks, serving for investigations by means of 
fixing known and obtaining new information about attacks. A formal model of attacks 
is a collection of mathematical dependences specifying attacks and allowing to study 
them formally and via simulation.  

The peculiarities of planning and execution of attacks, influencing on choice of a 
formal model of attacks, are as follows:  

1. Any attack is target- and intention-centered, i.e. it is directed against a 
particular object (network, computer, service, directory, file, etc.) and, as a rule, has a 
quite definite intention. Intention is understood as a goal or sub-goal a malefactor 
intends to achieve. We speak about malefactor’s “intentions” according to the 
terminology used for mental concepts. Formally specified intention we call a “goal”. 
Examples of intentions: reconnaissance (e.g. learning of network structure, 
identification of OS, hosts and/or services, etc.); penetration into the system; access to 
files of some directory; denial of service, etc. Examples of targets: IP-addresses of 
trusted hosts; password file; files of a particular directory; some resources of a 
particular host, etc. It should be noticed, that in some cases intention cannot be 
determined in advance. It can be accepted by malefactor in progress of attack 



development as a decision made on the basis of the obtained information and 
successfulness or ineffectiveness of particular malefactor’s actions fulfilled earlier.  

2. An attack intention can be represented in terms of partially ordered set of 
lower-level intentions. A set of malefactor’s intentions partially ordered in time is 
called an attack scenario. Intentions constituting attack scenario can be represented at 
different generalization levels. At the lowest level, each such intention is realized by a 
malefactor as a sequence of actions (network packets, commands of OS, etc.). Any 
malefactor's intention can be realized in multiple ways. Malefactor can vary the 
scenario implementing the same intention and the same attack object.  

3. Attack modeling corresponds to an adversary domain. Attack development 
depends on the result of each particular step of attack, i.e. it depends on response of 
the attacked network. In turn, a network response depends on security policy 
implemented. The current attack “state” is determined by initial malefactor's 
information about the attacked network (or host), by information collected at 
preceding attack steps, and also by the successfulness or ineffectiveness of the 
preceding steps.  

Thus, any attack development depends on many random factors and, first of all, 
depends on attacked network response. Therefore, even if a general malefactor's 
intention is determined, the attack development scenario cannot be definitely specified 
beforehand. An attack development depends on many uncertainties: (1) uncertainty in 
choice of the attack intention and attack object; (2) uncertainty caused by the 
information content with regard to the attacked network which a malefactor possesses 
at the beginning of attack and in progress of its development; (3) uncertainty of 
choice of attack scenario implementing the already selected intention; (4) uncertainty 
of the attacked computer network response. Let us describe conceptually the scheme 
of attack generation (simulation).  

Selection of the attack intention and attack object is a subjective act. Let the list 
X={ X1, X2, …, XN} of possible attack intentions and the list Y={ Y1, Y2, …, YM} of 
attack objects be given. To select some attack intention and an attack object, it is 
necessary to set some formal mechanism of choice, for example, randomization 
mechanism. Let an intention X∈X and an attack object Y∈Y be selected.  

The next component of attack modeling is a mechanism for generation of the 
attack given upper-level intention X and attack object Y in the terms of hierarchy of 
lower-level malefactor’s intentions and respective sequences of actions. Let us 
demonstrate the basic idea of such mechanism by example. Let us suppose that the 
malefactor’s intention X consists in getting access to files of some directory of a host. 
If malefactor does not possess some basic information about computer network or 
host then he/she has to start from reconnaissance R, which corresponds to the first 
intention at the level that is lower with regard to the intention X of the top level. The 
reconnaissance R can be fulfilled, for example, by four different sub-attacks {A, B, C, 
D}. Only one of them can be selected on current step of the attack development as a 
sub-goal (intention) of the second level. We admit, that the malefactor has selected 
sub-goal C. Another malefactor in the same situation could make other decision. 
Therefore, it is quite reasonable to specify the above selection as a randomized step. 
Thus, generation of an attack in terms of lower level intentions given upper-level 
intention X and attack object Y can be formalized on the basis of randomization of 
selection among {A, B, C, D}.  



 

Let the selected sub-goal C be to be realized as a sequence of “commands”, first of 
which be the command a1. The term “command” is used here in the generalized 
sense. Main difference between “command” and “intention” consists in the following. 
The command is a concrete action; it is not a mental concept, which represents a 
certain abstraction in malefactor’s mind. It can be a sequence of IP-packages, a 
command of operating system, etc. An intention is a component of the plan of actions; 
it is an “abstraction” represented formally at respective level of detail. In other words, 
malefactor “thinks and plans” in terms of intentions but acts in terms of commands.  

A set of sequences of commands, by which the malefactor tries to realize his /her 
intention, can be selected ambiguously. Therefore it is necessary to set a non-
deterministic mechanism for generation of sequences of commands. It is obvious, that 
it can be randomization mechanism, however, probably, not so simple, as the random-
number generator with a discrete distribution. Let a1 be the first generated command. 
This command is dispatched to the attacked computer network (host). The hierarchy 
<attack intention X, attack target Y>→<lower level intentions>→<actions>, 
corresponding to the considered example scheme of the initial phase of the attack 
generation is shown in tree-like form in Fig.1.  

The formally determined process of choice can be represented as follows: 
<Attack: intention X, target Y> → <R> <Attack continuation, detailing X>, 
<R>→<C><Attack continuation, detailing R>, <C>→ a1<Attack continuation, 
detailing C>. The response of the attacked system to each command can be 
characterized as “success” if the command is executed like the malefactor wanted, or 
“failure”, if the attacked system reacts to the command in the way that is undesirable 
for the malefactor. The following commands are depend on response of the attacked 
object to the command a1.  

If the chosen intention C is failed then the attack modeling and simulation process 
can be stopped (“the attack is over”), or the attack can be continued starting with 
reselection of the choice associated with 
specialization of intention R – predecessor of 
the failed intention C in the tree (see Fig.1) 
in terms of the rest of the set {A, B, C, D}, 
i.e. in terms of one of the lower level 
intentions {A, B, D}. In the last case, the 
choice of a new alternative for the intention 
R specialization is made with the respective 
recalculation of the probability distribution 
given over the truncated set of lower-level 
intentions.  

The next step of attack generation is 
similar to the previous one. If in the 
following steps no one of intentions A, B and 
D does not result in success then the attack 
can be either finished or continued with the 
subsequent modification of the attack object. It is worth to notice, that in both above 
cases the probability distribution given over the set of the potentially admissible next 
step selections of intention alternatives should be recalculated.  
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If the attack with intention C is successful, then the attack can be stopped (if the 
goal is reached), or can be continued. This choice is also non-deterministic and can be 
simulated by a probabilistic mechanism and so on and so forth.  

To an arbitrary step n of the attack generation (simulation) its state can be 
specified by a sequence of the following sort: A(n)=<Attack prehistory> <Current 
state> <Attack continuation>, where <Attack prehistory> is a sequence of the 
symbols corresponding to the preceding steps, in which each symbol is marked with a 
flag from a set {“success”, “failure”}. This sequence can include symbols of 
intentions of different levels of detail, and symbols of actions. It is supposed, that the 
attack can be simulated at various levels of detail of the description; <Current state> 
is a partially unfolded sequence of the current attack step symbols; <Attack 
continuation> is still unknown part of the sequence A(n), which generation is 
expected. In addition, current state of the attack development can also contain 
information collected at preceding steps. 

It should be clear that it is impossible to enumerate and to specify all sequences 
A(n), i.e. to specify completely in declarative form the total set of attacks and variants 
of their development mapped to total set variants of the attacked network responses. 
Therefore, the only way to specify attacks if it exists at all, is procedural way, which 
suppose to model attack by a generation algorithm. This way is used in this research.  

While describing the developed model, let us start with terminology that actually 
corresponds to the basic notions that will be structured and formalized below as the 
domain ontology. In the developed formal model of attacks, the basic notions of the 
domain correspond to malefactor’s intentions and all other notions are structured 
according to the structure of intentions. This is a reason why the developed approach 
is referred to as “intention-centric approach”.  

The following basic classes of high-lever malefactor's intentions and their 
identifiers are used in the developed formal model: 

1. R – Reconnaissance aiming at getting information about the network (host). The 
followings are the particular cases of intentions of this class: IH – Identification of the 
running Hosts; IS – Identification of the host Services; IO – Identification of the host 
Operating system; CI – Collection of additional Information about the network; RE – 
shared Resource Enumeration; UE – Users and groups Enumeration; ABE – 
Applications and Banners Enumeration.  

2. I – Implantation and threat realization. The followings are its lower level 
variants of its specialization: GAR – Getting Access to Resources of the host; EP – 
Escalating Privilege with regard to the host resources; GAD – Gaining Additional 
Data needed for further threat realization; TR – Threat Realization, TR can be detailed 
at the lower level in the following terms: CVR – Confidentiality destruction 
(Confidentiality Violation Realization), for example, through getting access to file 
reading, IVR – Integrity Destruction (Integrity Violation Realization) realizing 
through attacks against integrity of the host resources, AVR – Denial of Service 
(Availability Violation Realization); CT – Covering Tracks to avoid detection of 
malefactors’ presence, CBD – Creating Back Doors.  

An attack task specification (or a top-level attack goal) can be specified by the 
following quad: <Network (host) address, Malefactor's intention, Known data, Attack 



 

object>1. The task specification has to determine the class of scenarios that lead to the 
intended result. Known data specifies the information about attacked computer 
network (host) known for a malefactor. Attack object corresponds to the optional 
variable in attack goal specification and are specified in the following ways:  
(1) “_” – the attack object is not specified for the malefactor's intention 

“Reconnaissance” (R);  
(2) If the intention corresponds to the attacks like CVR or IVR then the attack object is 

specified as follows: [Account,] [Process {<Process name >/< Process mask >},] 
[File {<file name >/< file mask >},] [Data in transit {< file (data) name >/< file 
(data) mask >}], where Account is object's account, Process is running 
process(es), File is file(s) that is the attack target(s) to get, Data in transit is data 
transmitting, where the variables in [] are optional, the repeatable variables are 
placed in {}, and symbol “/” is interpreted as “OR”;  

(3) “All” – all resources of the host (network);  
(4) “Anyone” – at least one of the resources of the host (network). 

3   “Computer Network Attacks” Ontology 

It is well known that the development of a model of an information system must start 
with the development of the domain ontology. The ontology is the set of notions 
structured in terms of relationships existing over them. The ontology has to be 
abstracted from specifics of the implementation issues. A peculiarity of the particular 
domain is reflected in data structures and algorithms interpreting ontology notions and 
relationships. Although at present a lot of work is being performed in order to develop 
ontologies [33], but there are no such works in the network attacks domain.  

The developed ontology comprises a hierarchy of notions specifying activities of 
malefactors directed to implementation of attacks of various classes in different levels 
of detail. In this ontology, the hierarchy of nodes representing notions splits into two 
subsets according to the macro- and micro-levels of the domain specifications. All 
nodes of the ontology of attacks at the macro- and micro-levels of specification are 
divided into the intermediate (detailable) and terminal (non-detailable).  

The notions of the ontology of an upper level can be interconnected with the 
corresponding notions of the lower level through one through three kinds of 
relationships: (1) “Part of” that is decomposition relationship (“Whole”–”Part”); (2) 
“Kind of” that is specialization relationship (“Notion”–”Particular kind of notion”); 
and (3) “Seq of“ that is relationship specifying sequence of operation (“Whole 
operation” – ”Sub-operation”). High-level notions corresponding to the intentions 
form the upper levels of the ontology. They are interconnected by the “Part of” 
relationship. Attack actions realizing malefactor's intentions are interconnected with 
the intentions by “Kind of” or “Seq of“ relationship. The developed ontology includes 
the detailed description of the network attack domain in which the notions of the 
bottom level (“terminals”) can be specified in terms of network packets, OS calls, and 
audit data.  

                                                           
1 In the software tool this quad is used for specification of simulation task by user. 



Let us look at a high-level fragment of the developed ontology (Fig.2). At the 
upper-level of the macro-specification of attacks, the notion of “Network Attack” 
(designated by A) is in the “Part of” relationship to the “Reconnaissance” (R) and 
“Implantation and threat realization” (I). In turn, the notion R is in the “Part of” 
relationship to the notions IH, IS, IO, CI, RE, UE, and ABE. The notion I is in the 
“Part of” relationship to the notions GAR, EP, GAD, TR, CT, and CBD. In the next 
(lower) level of the hierarchy of the problem domain ontology, for example, the 
notion IH is in the “Kind of” relationship to the notions “Network Ping Sweeps” (DC) 
and “Port Scanning” (SPIH). At that, the notion “Network Ping Sweeps” (DC) is the 
lowest (“terminal”) notion of the macro-level of attack specification, and the notion 
“Port Scanning” (SPIH) is detailed through the use of the “Kind of” relationship by a 
set of “terminal” notions of the macro-level of attack specification.  

The “terminal” notions of the macro-level are further detailed at the micro-level of 
attack specification, and on this level they belong to the set of top-level notions 
detailed through the use of the three relationships introduced above. Thus, for 
example, the notion “Network Ping Sweeps” (DC) is in the “Kind of” relationship 
with the notions “Network Ping Sweeps with ping” (PI), “Network Ping Sweeps with 
Ping Sweep” (PSW), etc., which, in turn, correspond to the names of utilities that 
perform “Network Ping Sweeps”.  

In turn, each of these notions, e.g. “Network Ping Sweeps with Ping Sweep” 
(PSW), is in the “Seq of“ relationship to the “ICMP ECHO REQUEST” (IER) notions. 
The “ICMP ECHO REQUEST” (IER) notions correspond to network packets that are 
directed at the host (or the network) – the target of the attack.  
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Fig.2. Macro-level fragment of the domain ontology “Computer network attacks” 
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In micro specifications of the attacks ontology, besides the three relations 
described (“Part of”, “Kind of”, “Seq of”), the relationship “Example of” is also used. 
It serves to establish the “type of object – specific sample of object” relationship. In 
Fig.3, this type of relationship is used 
to establish the connection between 
the echo-request of the protocol 
ICMP (“ICMP ECHO REQUEST”) 
and its specific implementation 
specified, for example, as a message 
<time> <src_addr> > 
<dest_addr>: icmp: echo 
request, where <time> – time 
stamp, <src_addr> – source IP 
address, <src_port> – source port, 
<dest_addr> – destination IP 
address.  

4   Formal Framework for Attacks Specification  

Being based on the above explanation of the attack modeling strategy, definition of 
basic notions of attack specification and structure of the basic malefactors’ intentions 
and also on the malefactors' actions, the following basic assumptions and statements 
are used below in the formal attack specification:  
(1) Each attack intention can be considered as a sequence of symbols in terms of 

lower-level intentions. These sequences can be formally considered as "words" of 
a language, which can be generated by a formal grammar. Thus, each node of the 
ontology (see Fig.2) can be specified in terms of a formal grammar generating 
more detailed attack specification;  

(2) Analysis of a wide spectrum of formal grammar-based specifications of attack 
intentions justified that attack intentions can be adequately specified in terms of 
LL(2) context-free grammar;  

(3) Specification of uncertainties inherent to the attack development can be done in 
probabilistic terms through attributes and functions given over them. Thus, in 
conjunction with the above conclusions the resulting framework for attack 
specification can be restricted to a stochastic attribute grammar;  

(4) Each node (grammar) of the ontology (like shown in Fig.2) is interconnected with 
the upper level node (grammar) and this interconnection can be specified through 
“grammar substitution” operation [15] in which a terminal symbol of the parent 
node is considered as the axiom of the grammar corresponding to its child node.  

(5) Each malefactor’s action has to be followed by an attacked network response.  
The rest of this section presents the above summary in formal terms. 
Thus, mathematical model of attack intentions is determined in terms of a set of 

formal grammars specifying particular intentions interconnected through 
“substitution” operations: M

A
=<{G

i
}, {Su}>, where {G

i
} – the formal grammars, 

{Su} – the “substitution” operations.  
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Every formal grammar is specified by quintuple G=<VN,VT,S,P,A>, where G is 
the grammar name, VN  is the set of non-terminal symbols (that are associated with the 
upper and the intermediate levels of an attack scenario), VT is the set of its terminal 
symbols (that designate the steps of a lower-level attack scenario), S∈ VN is the 
grammar axiom (an initial symbol of an attack scenario), P is the set of productions 
that specify the specialization operations for the intention through the substitution of 
the symbols of an upper-level node by the symbols of the lower-level nodes, and A  is 
the set of attributes and algorithms of their computation.  

Attribute component of each grammar serves for several purposes. The first of 
them is to specify randomized choice of a production at the current inference step if 
several productions have the equal left part non-terminals coinciding with the “active” 
non-terminal in the current sequence under inference. These probabilities are 
recalculated on-line subject to the prehistory of attack development and previous 
results of attack. So, in order to specify a stochastic grammar, each production is 
supplemented with a specification of the probability of the rule being chosen in the 
inference process.  

Also the attribute component is used to check conditions determining the 
admissibility of using a production at the current step of inference. These conditions 
depend on attack task specification, attacked computer network (host) response and 
also on the malefactor’s previous actions. These conditions may depend on 
compatibility of malefactor's actions and attacked network or host properties, e.g., OS 
type and version, running services, security parameters, etc.  

These are the examples of host parameters, which may form production 
conditions: (1) OS types – Unix, Linux, Win (all Windows OS), 9x (95, 98, Me), NT 
(NT, 2000), SunOS, Solaris, etc.; (2) running applications – e.g., PWS – an initial 
version of Microsoft's Personal Web Server is running; (3) protection parameter – 
CFP (shared files and printers), NS (Null Sessions), PA (Password is Absent), RR 
(Remote Registry), etc.; (4) additional parameters – AS (Access to Segment of LAN), 
THD (Trusted Host Data), etc.  

If it is necessary to specify several parameters, operations “OR” (signified by “,”) 
and (or) “AND” (“.”) are used. Relationships of ownership and membership are also 
taken into account, e.g. SunOS∈Unix; {95, 98, Me}⊂ 9x; {95, 98, Me, NT, 2000}⊂ 
Win, 9x ∈ Win, etc.  

Thus, in general case, the grammar production is recorded as follows: [(U)] X → α 
(Prob), where U – the condition for upholding the rule, [ ] – an optional element, X – 
non-terminal symbol, α –a string of terminal and non-terminal symbols, Prob – the 
initial probability of the rule. 

Let us explain by example the operation of grammar substitution and its role in 
the formal model of attacks. Let a∈VT(Gi) be a terminal symbol of the grammar Gi in 
the sequence of symbols generated by the grammar Gi, a is a node of the ontology 
mapped to the grammar G(a). Symbol a denotes the name of a particular intention or 
attack action and G(a) is the grammar generating variants of the a implementation. 
Let also X be the axiom of the grammar G(a). Then, operation Su(a) of substitution 
G(a) in place of symbol a is specified in the form  Su(a): {a → G(a)}. Semantics of 
this operation is that in place of symbol a in already generated sequence any “word” 
generated by grammar G(a) can be placed. In fact, this operation corresponds to a step 
towards the more detailed specification of an attack scenario.  



 

When the micro specifications are used for modeling of attacks, it is necessary to 
use the ontology nodes of the lowest (terminal) level and substitute specific values for 
the variables that determine the attack task specification.  

For example, let us suppose a ping attack is being implemented using “Network 
Ping Sweeps with Ping Sweep” (PSW). PSW is in the “Seq of” relationship to the 
“ICMP ECHO REQUEST” (IER) network packets that are directed at the target host 
(network). In micro specifications of attacks the IER node is in the “Example of” 
relationship to its specific implementation defined as the following message: <time> 
<src_addr> > <dest_addr>: icmp: echo request ,where <time> – time 
stamp, <src_addr> – source IP address, <src_port> – source port, 
<dest_addr> – destination IP address.  

The grammar that specifies PSW may look like this: VN={PSW, PSW1}, 
VT={IER}, S={PSW}, P={PSW → IER PSW1 (1), PSW1 → IER PSW1 
(0.2), PSW1 → IER (0.8)}.  

Let us suppose a ping attack with “Ping Sweep” is being implemented from host 
244.146.4.20 on the hosts of the network 198.24.15.0 in the time interval 
[0:43:10.094644, 00:43:16.036735]. Let us suppose that the string “IER IER” was 
created as a result of using the PSW grammar. Then, based on the “Example of” 
relationship, the symbols of this string should generate two messages:  

<time1> <src_addr> > <dest_addr>: icmp: echo request , 
<time2> <src_addr> > <dest_addr>: icmp: echo request . 
After the parameterization <time1> = 00:43:10.094644, 

<src_addr>=244.146.4.20, <dest_addr> = 198.24.15.255, 
<time2>=00:43:16.036735, these messages should look like these:  
00:43:10.094644 244.146.4.20>198.24.15.255:icmp:echo request and 
00:43:16.036735 244.146.4.20>198.24.15.255:icmp:echo request,  
which correspond to the icmp-packets sent to the network hosts 198.24.15.0 (since the 
X.X.X.255 address is specified in the icmp-packets, the packets are sent to all the 
hosts of the specified networks).  

The development of the family of grammars {Gi} is conducted in the following 
order: (1) First, for each basic malefactor's intention, its own family of enclosed 
attributed stochastic context-free grammars is constructed; (2) Second, these families 
of grammars are transformed into the generalized grammars that correspond to each 
non-terminal node of ontology for all of the intentions.  

It is assumed that if a value of the production condition is not determined at the 
moment of production selection all available productions may be used at the 
respective step of attack simulation. Also it is supposed that the terminal actions 
generated by productions are associated with the probabilities of successful 
realization of those actions (attacks) and the host response.  

Let us consider, for example, the grammars for the intention “Users and groups 
Enumeration” (UE) can be as follows:  
 
Level “Network Attack”: VN={A, A1}, VT={R}, S={A},  
P={A → A1 (1), A1 → R (0.7), A1 → R A1 (0.3)};  
Level “Reconnaissance”: VN={R, R1}, VT={UE}, S={R},  
P={R → R1 (1), R1 → UE (0.7), R1 → UE R1 (0.3)};  

Level “Users and groups Enumeration”  



VN={UE, UE1, UE2, UE3, UE4}, S={UE},  
VT={DNNT, EUE, PIUD, IAUS, SNMPE, FUE, UTFTP},  
Pfor Windows 9x,Me,NT,2000={(Win) UE→ UE1(1), (NS)UE1→ UE2(0.65), 
UE1→ SNMPE(0.25), UE1→SNMPE UE1 (0.05), (NS)UE1→UE2 UE1 
(0.05), (&)UE2→CNS UE3(1), UE3→DNNT (0.2), UE3→DNNT UE4 
(0.05), UE3→IAUS(0.35), UE3→EUE(0.2), UE3→ PIUD (0.2), 
UE4→DNNT UE4(0.1), UE4→DNNT(0.9)},  
Pfor Unix/Linux ={(Unix, Linux) UE→UE1(1), UE1→FUE(0.3),  
UE1→SNMPE(0.2), UE1→UTFTP(0.1), UE1→FUE UE1(0.1),  
UE1→SNMPE UE1(0.1), UE1→UTFTP UE1(0.2)};  

Level “Identifying Accounts with user2sid/sid2user”:  
VN={IAUS, IAUS1, IAUS2}, VT={ISU, IAS}, S={IAUS},  
P={(NT) IAUS → IAUS1 (1), (&) IAUS1 → ISU IAS (0.8), 
IAUS1 → IAUS1 IAUS2 (0.2), (&) IAUS2 → ISU IAS (1)}. 

 

In this set of grammars the following denotations are used: A – Network Attack; R – 
Reconnaissance; UE – Users and groups Enumeration; DNNT – Dumping the NetBIOS Name 
Table with nbtstat and nbtscan; EUE – Enumerating Users with enum; PIUD – Providing 
Information about Users with DumpSec (DumpACL); IAUS – Identifying Accounts with 
user2sid/sid2user; SNMPE – SNMP Enumeration with snmputil or IP Network Browser; FUE – 
Finger Users Enumeration; UTFTP – Use of Trivial File Transfer Protocol for Unix 
enumerating by stealing /etc/passwd and (or) /etc/hosts.equiv and (or) ~/.rhosts; ISU – 
Identifying SID with user2sid; IAS – Identifying Account with sid2user using user’s RID; A1, 
R1, UE1, UE2, UE3, UE4, IAUS1, IAUS2 – auxiliary symbols.  
 

Algorithmic interpretation of the attack generation specified as formal generalized 
grammars is implemented by a family of state machines. The basic elements of each 
state machine are states, transition arcs, and explanatory texts for each transition. 
States of each state machine are divided into three types: first (initial), intermediate, 
and final (marker of this state is End). The initial and intermediate states are the 
following: non-terminal, those that initiate the operation of the corresponding nested 
state machines; terminal, those that interact with the host model; auxiliary states. 
Transition arcs are identified with the productions of grammars. The model of each 
state machine is set by specifying the following elements: diagram; main parameters; 
parameters of transitions that determine the stochastic model of the state machine for 
different relevant intentions; executable scripts; transition conditions.  

5   Formal Model of the Attacked Computer Network  

The attack development depends on the malefactor's “skill”, information regarding 
network characteristics, which he/she possesses, some other malefactor's attributes 
[39], security policy of the attacked network, etc. An attack is developing as 
interactive process, in which the network is reacting on the malefactor's action. 
Computer network plays the role of the environment for attacker, and therefore its 
model must be a part of the attack simulation tool.  

The peculiarity of any attack is that the malefactor's strategy depends on the 
results of the intermediate actions. This is the reason why it is not possible to generate 



 

the complete sequence of malefactor's actions from the very beginning. The 
malefactor's action has to be generated on-line in parallel with the getting reaction 
from the attacked network. The proposed context-free grammar syntax provides the 
model with this capability. At each particular step of inference, it generates no more 
than single terminal symbol that can be interpreted by the computer network model as 
a malefactor's action. The network returns the value of the result (success or failure). 
The model of attacker receives it and generates the next terminal symbol according to 
the attack model and depending on the returned result of the previous phase of the 
attack.  

Model of the attacked computer network is represented as quadruple MA = <MCN, 
{MHi}, MP, MHR >, where MCN is the model of the computer network structure; {MHi} 
are the models of the host resources; MP is the model of computation of the attack 
success probabilities; MHR is the model of the host reaction in response of attack.  Let 
us determine the model MCN of a computer network structure CN as follows: M

CN
 = < 

A, P, N, C >, where A is the network address; P is a family of protocols used (e.g., 
TCP/IP, FDDI, ATM, IPX, etc.); N is a set {CNi} of sub-networks and/or a set {Hi} of 
hosts of the network CN; C is a set of connections between the sub-networks (hosts) 
established as a mapping matrix. If N establishes a set of sub-networks {CNi}, then 
each sub-network CNi  can in turn be specified by the model M

CNi (if its structure 
needs to be developed in detail and if information is available about this structure). 
Each host Hi is determined as a pair M

Hi
= <A, T>, where A is the host address, T is a 

host type (e.g., firewall, router, host, etc.).  
Models {MHi} of the network host resources serve for representing the host 

parameters that are important for attack simulation. Let us determine the model of the 
network host resources as follows: MHi = < A, M, T, N, D, P, S, DP, ASP, RA, SP, SR, 
TH, etc.>, where A – IP-address, M – mask of the network address, T – type and 
version of OS, N – users' identifiers (IDs), D – domain names, P – host access 
passwords, S – users' security identifiers (SID), DP – domain parameters (domain, 
names of hosts in the domain, domain controller, related domains), ASP – active TCP 
and UDP ports and services of the hosts, RA – running applications, SP – security 
parameters, SR – shared resources, TH – trusted hosts.  

Success or failure of any attack action (corresponding to terminal level of the 
attack ontology) is determined by means of the model MP of computation of the attack 
success probabilities. This model is specified as follows: MP = {RSPr

j }, where  RSPr
j is 

a special rule that determines the action success probability depending on the basic 
parameters of the host (attack target). The rule RSPr

j includes IF  and THEN  parts. 
The IF part contains action name and precondition (values of attributes constraining 
the attack applicability). The THEN part contains value of success probability (SPr). 
Examples of interpretations of the probability computation rules are as follows:  

“If action is ‘FF’ (Connection on FTP and examination of bin-
files in the directory /bin/ls) and OS Type is ‘Unix, Linux’ and 
Service is ‘FTP’ then SP is 0.7”;  

“If action is ‘FCA’ (Free Common Access) and OS type is 
‘Windows 9x’ and Security parameter is ‘CFP’ (shared files and 
printers) then SP is 0.7”. 

The result of each attack action is determined according to the model MHR of the 
host reaction. This model is determined as a set of rules of the host reaction: MHR = 



{RHR
j },  RHR

j: Input → Output [& Post-Condition]; where Input – the malefactor’s 
activity, Output – the host reaction, Post-Condition – a change of the host state, & – 
logical operation “AND”, [] – optional part of the rule. The Input format: <Attack 
name>: <Input message> : <Attack objects> [; <Objects involved 
in the attack>. The Output format: {<Attack success parameter S> [: 
<Output message>];{<Attack success parameter F> [: <Output 
message>]}. The Attack Success Parameter is determined by the success 
probability of the attack that is associated with the host (attack target) depending on 
the implemented attack type. The values of attack success parameter are Success 
(S), and Failure (F). The part of output message shown in the < > is taken from 
the corresponding field of the host (target) parameters. The part of output message 
shown in quotation marks “ ” is displayed as a constant line. The Post-Condition 
format: {p1=P1, p2=P2, …, pn=Pn}, where pi – ith parameter of the host (for 
instance, SP, SR, TH, etc.) which value has changed, Pi – the value of ith parameter.  

Examples of the host reaction rules:  
SFB: Scanning “FTP Bounce” : Target host; Intermediate host 

(FTP-server) → {S: <Active ports (services) of a host>; F: “It 
was not possible to determine Active ports (services)”};  

IF: ICMP message quoting : Target host → { S: <The type of 
operating system>; F: “It was not possible to determine the type 
of operating system”}.  

6   Implementation of Attack Simulator  

The software prototype of the attack simulator has been implemented. Now it is used 
for validation of the accepted formal framework. It consists of three components: the 
model of attacker, the model of the attacked computer network and the background 
traffic generator. Background traffic is formed taking into account the model of the 
attacked computer network as a set of sessions between hosts of the network. The 
common traffic generated by integration of streams of data from these components 
can be an input for IDSs evaluation and learning.  

Each of the components of the attack simulator was built as an agent of multi-
agent system (MAS). The design and implementation of the attack simulator is being 
carried out on the basis of MASDK – “Multi-Agent System Development Kit” [16]. 
All MAS agents generated by MASDK have the same architecture. Differences are 
reflected in the content of particular agent's data and knowledge bases. Each agent 
interacts with other agents, environment which is perceived, and, possibly, modified 
by agents, and user communicating with agents through his interface. Receiver of 
input and Sender of output messages perform the respective functions. Messages 
received are recorded in Input message buffer. The order of its processing is managed 
by Input message processor. In addition, this component performs syntax analysis and 
messages interpretation and extracts the message contents. The component Database 
of agent's dialogs stores for each input message its attributes like identifiers, type of 
message and its source. If a message supposes to be replied it is mapped the 
respective output message when it is sent.  



 

Meta-state machine manages the semantic processing of input messages directing 
it for processing by the respective State machines. The basic agent’s computations are 
executed by a set of State machines. The selection of scenario and therefore the output 
result depend on the input message content and inner state of the State Machine. In 
turn, inner state of this Machine depends on pre-history of its performance; in 
particular, this prehistory is reflected in the state of agent's Knowledge base and 
Database. One more state machine called “Self-activated behaviour machine” is 
changing its inner state depending on the state of the data and knowledge bases. In 
some combinations of these states it can activate functionality independently on input 
messages or state of the environment. Each agent class is provided with a set of 
particular message templates according to its functionalities. The developer carries 
out the specialization procedure with Editor of message templates, which, in turn, is a 
component of MASDK. Communication component of each agent includes also data 
regarding potential addressees of messages of given template.  

The screen indicating generation of the intention “Gaining Access to Resources” 
(GAR) is depicted in Fig.4. In this screen the attack generation at the reconnaissance 
stage after execution of the action “Enumerating Users with enum” (EUE) is fixed. In 
the figure the information is divided on four groups: (1) the attack task specification 
units are mapped in the left top of the screen; (2) to the right of them the attack 
generation tree is visualized; (3) the strings of the malefactor’ s actions are placed in 
the left part of the screen below the attack task specification; (4) on the right of each 
malefactor’s action a tag of success (failure) as green (black) quadrate and data 
obtained from an attacked host (a host response) are depicted. 

From implementation issue, a computer network attack can be considered as a 
sequence of coordinated actions of the spatially distributed malefactors. Each 
malefactor is mapped as an intelligent agent of the same architecture possessing the 

Fig.4. Visualization of the attack development: the reconnaissance stage of the attack 
“Gaining Access to Resources” after execution of the action EUE 



similar functionality. While developing an attack, these agents interact via message 
exchange informing each other about current state and results of the attack in order to 
coordinate their further activity. These messages are represented in KQML that is 
standard of DARPA (for message “wrapper”), and XML (for message content).  

We are developing2 a teamwork interpretation of the malefactors’ activity 
performing distributed attacks on the basis of joint intention theory [37]. When 
implementing the complex coordinated attacks, the special meta-agent should form 
the common scenario of the attack and assigns areas of responsibility to other agents 
based on the general attack goal constituted by simulation tool user. The agents, 
responsible for the particular fragments (steps) of the common scenario, can in turn 
“employ” other agents or realize particular operations independently. For this purpose 
the special scenarios of operations and protocols of messaging will be used. The 
concrete scenario and protocol are determined with usage of the network attacks 
ontology depending on a type of the realizable goal (intention) and the attacked 
network response. All set of the involved agents realizing the concrete scenario 
compose a hierarchical structure. 

7  Related Works  

The works relevant to attack modeling and simulation can be divided into the 
following groups: (1) works describing attacks and attack taxonomies, (2) works 
immediately coupled with attack modeling and simulation, (3) works devoted to the 
description of attack specification languages; (4) works on evaluating IDSs; (5) works 
on signature and traffic generation tools. This list is not exhaustive.  

There are a lot of works in which attack cases are systematized as attack 
taxonomies (for example, [2], [7], [18], [24], [25], etc.). Based on these taxonomies 
we built our own taxonomy as an ontology comprising a hierarchy of intentions and 
actions of malefactors directed to implementation of attacks of various classes split 
into macro- and micro-levels.  

In different works on attack modeling and simulation, as a rule, attack is 
considered as temporal orderings of actions ([6], [8], [22], [23], [36], etc.). In [22] the 
state transition analysis technique was developed to model host-based intrusions. A 
description of an attack has a “safe” starting state, zero or more intermediate states, 
and (at least) one “compromised” ending state. States are characterized by means of 
assertions describing different aspects of the security state. The work [6] presents an 
approach to simulate intrusions in sequential and parallelized forms. The paper [23] 
suggests formal models of both network and attacks and extends the state transition 
analysis technique to network-based intrusion detection in order to represent attack 
scenarios in networks. In [8] a simple network security model “Cause-Effect Model of 
Information System Attacks and Defenses” was proposed. It is composed of network 
model represented by node and link, cause-effect model, characteristic functions, and 
pseudo-random number generator. In ([39], [40]) the descriptive models of the 
network and the attacker’s capabilities, intentions, and courses-of-action are 

                                                           
2 Currently this part of work is in progress.  



 

described. These models are used to identify the devices most likely to be 
compromised. Principles from economics are used to predict the attacker's behavior. 
Conceptual models of computer penetration were presented in [36]. The paper 
compares the traditional and “new” attack paradigms. Traditional attack paradigm 
includes phases of “information gathering”, “exploitation”, and “metastasis”. The 
metastasis phase of the attack can be logically divided into sub-phases of 
“consolidation” and “continuation”. The core of the new distributed metastasis 
methodology is a desire to utilize the distributed nature of network environment, and 
to perform an automation of the metastasis phase using a distributed agent-based 
approach. We used in our formal model the temporal orderings of actions and 
proposed multi-agent teamwork-based approach for modeling of coordinated 
distributed attacks.  

In ([19], [32] and some other) attacks are modeled in a structured and reusable 
“tree”-based form. In [19] a high-level conceptual model of attack based on the 
intruder’s intention (attack strategy) is presented. The paper determines intrusion 
intention as the goal-tree: the root node corresponds to ultimate goal of attack, and 
lower level nodes represent alternatives or ordered sub-goals in achieving the upper 
node goal. In [32] means for documenting attacks in a form of attack trees are 
described. Each attack tree enumerates and elaborates the ways that an attacker could 
cause the event to occur. Two structures are used for attack representation: an attack 
pattern (characterizing an individual type of attack), and an attack profile (organizing 
attack patterns to make it easier to apply them). As in [19] and [32] we apply 
intension- and tree-based attack strategy representation, but “go further” using for 
node decomposition a formal framework based on context-free grammars 
implemented in terms of state machines.  

A model to evaluate survivability of networked systems after network incidents 
was developed in [31]. The model consists of three sub-models: the first one 
simulates the occurrence of incidents, the second one evaluates the impact of an 
attack on the system, and the third one assesses the survivability of the system. The 
model of incidents is determined as a marked stochastic process, where the incidents 
are the events that occur at random points in time, and the event type is the mark 
associated with an incident. Besides attack generation model, our approach includes 
also the model of attacked computer network that evaluates the impact of an attack on 
the network hosts and generates reaction of the network. The attacked network is 
considered as environment that reacts on the malefactors' actions. The variance of 
attacks is ensured by the random choice of the grammar productions (or, what is the 
same, the state machine transition rules). The peculiarity of any attack is that the 
malefactor's strategy depends on the results of the intermediate actions.  

The paper [5] describes the cyber attack modeling and simulation methodology 
based on SES/MB (system entity structure and model base) framework and Discrete 
Event Simulation (DEVS) formalism. This simulation methodology allows classifying 
threats, specifying attack mechanisms, verifying protection mechanisms, and 
evaluating consequences. Our approach has resembling purposes, but it uses 
stochastic formal-grammar-based specification of the malefactor’s intentions and 
scenarios of network attacks.  

For attack fixing, reproduction, analysis, recognition, response, documenting, 
special attack languages are used [38]: event languages ([3], etc.), exploit languages 



([4], etc.), reporting languages ([10], [13], etc.), detection languages ([12], [29], [34], 
etc.), correlation languages, response languages, and integrated languages ([9], [30], 
etc.). Our formal language is related mostly to the exploit and event languages, 
because it is used to describe attack stages and the format of events generated. Our 
attack representation language includes parts used for description of attack 
preconditions, attack intentions and actions, formats of actions of terminal level, and 
postconditions (states of the attacked hosts).  

In all works devoted to the evaluation of IDSs the attack simulation issues are 
considered. In [35] a methodology and software tools for testing IDSs using scripts to 
generate both background traffic and intrusions are described. In evaluations 
performed by the Lincoln Laboratory at MIT ([26], etc.), investigators were given 
sniffed network traffic, audit data, and file-system snapshots. The report [11] 
discusses issues associated with the generation of suitable background traffic; attacks 
are obtained from a vulnerability database. In ([2], [27]) it was marked that 
benchmarking IDSs is not generic and systematic enough for evaluation needs. In [2] 
another approach is investigated. It consists of comparing and evaluating IDSs at the 
level of their specification rather than at the level of their implementation. Our 
approach also presumes that IDSs can be evaluated and verified at different phases of 
their development and implementation. The more detailed level of attack 
representation is used in the attack model the more advanced level of IDS is 
evaluated.  

Now there are a lot of signature and traffic generation tools: FlameThrower, 
Fragrouter, Hailstorm, IDS Informer, MS WCAT, nidsbench, SmartBits, Stick, etc. 
But the majority of these tools are doing only simulated pseudorandom malicious 
packets. As Marcus Ranum noticed in discussions on focus-ids@securityfocus.com 
“Make sure that you're not only generating “signatures” but that they are within the 
context of apparently valid sessions – otherwise you're actually benchmarking an IDS' 
ability to detect false positives, not real attacks.” On our sight Hailstorm (Cenzic) [17] 
and IDS Informer (BLADE Software) [21] have most interesting properties. 
Hailstorm generates traffic based on patterns specifying how a packet is to be 
generated over the network. IDS Informer has been designed to allow launch S.A.F.E. 
(Simulated Attacks for Evaluation) attacks. The S.A.F.E. process builds the attacks 
based on previously recorded real attacks. In our approach the malicious and 
background traffic on the terminal levels is formed within the context of valid 
sessions.  

8   Conclusion  

In the paper, attack is considered as competition of malefactor(s) and computer 
network security system, i.e. attack-modeling task is considered as an adversary 
domain. We proposed a formal grammar-based framework for attack modeling and 
considered the basic issues of the attack simulator development. Formal framework is 
built as a hierarchy of attribute stochastic context-free grammars interconnected via 
the “grammar substitution” operation. The framework makes it possible to specify 
and to simulate a wide spectrum of attacks at various levels of detail. Software 



 

prototype of the attack simulator is developed. The attack simulator allows simulating 
a wide spectrum of real-life attacks. The respective software code is written using 
Visual C++ 6.0, Java 2 version 1.3.1, KQML and XML languages. The basic ideas of 
the modeling and simulation of coordinated distributed attacks are developed.  
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