
September 8-10, 2010

CLARIFYING INTEGRITY CONTROL

AT THE TRUSTED INFORMATION ENVIRONMENT

Dmitry Zegzhda Peter Zegzhda Maxim Kalinin

Information Security Center,

St. Petersburg Polytechnical University,

Russia

Mathematical Methods, Models, and Architectures

for Computer Networks Security (MMM-ACNS-2010)

Trusted computer system

 Confidentiality

 Integrity

 Accessibility

How to reach the trustworthiness?

 Source code analysis

• Reliability models

 Security modeling and assurance

• Discretionary, mandatory, role-based, etc. models

• Security specification languages, calculus and processing tools

• Security monitoring and vulnerabilities detection

• Intrusion detection methods

 Cryptography

• Cryptographic algorithms and protocols

 Result: ‘point’ security.

 BUT INFORMATION ENVIRONMENT CONSTANTLY CHANGES

Integrity problem

 Confidentiality

 Accessibility

• Traditional methods

 Integrity

• Data-relevant definition: assurance that information is

authentic and complete (hash, checksums)

• Functional integrity (wholeness of the system)?

Contradictory versions of the program libraries

Software Updates

New access permissions for new users

Components of information environment

Trusted Information Environment

Applications, operating

system, data bases,

information assets, etc.

Configuration of

Software

Configuration of

Software Interactions

Integrity Threats

Data and Code

Changes

Composition

Modification

Settings

Modification

Composition

Settings

Compatibility

Options

Binaries

Installation of

Incompatible

Software

Accounts

DBMS

Stable Program
Components Variable Program Components

OS

Cryptographic

Methods ?

Stable vs. variable

 Stable components:

• the functional modules that are founded at system designing and
building (executables, OS elements, data bases)

Long life-cycle -> cryptographic methods

 Variable components:

• modified settings (security parameters: system registry, access
control rights; session characteristics: active users, applications list

• Huge number of parameters undergoing control

Short and tiny life cycle -> ?

Integrity is ensuring
that information environment is stable (invariable)

(not in point but in area)

System state elements

a set of program components Pp
i

, where P depicts the set of TIE's

components, Ni . A program item is specified with a program type TT
n

,

where T is a set of program types (e.g., system software, user application,
security mechanism), Nn ;

a set of program attributes }a{A nn T

j

T , where
n

T is a program type,
j

a is a

component of program attribute; Nj . Program attributes are the settings of

the TIE's program components;

a set of attribute values }v{V inin p,T

k

p,T , where) A,, T(pvarv nin T

ni

p,T

k
, Nk .

Function TT VAT: Pvar for the program item Pp
i

 of type TT
n

 with

attributes nTA returns the values nTV .

Formal integrity conditions

TTTT VATPVATP:ref :

set of attributes Tt Aa with values p,tp,t Vv

program component Pp of the type Tt

points to the set of AGREED attributes T't Aa with values 'p,'t'p,'t Vv of

another program item P'p of the type T't .

One (TV) or several (TT VV) values refer to another program item:

)VV(ATPVATP:ref TTT .

The reverse function)VV(ATP)VV(ATP:ref TTTT 1

defines area TT VV for each point from TT VV .

Symmetric relations has not to be empty:

.d'd;'d,a,t,pd,a,'t,'p(ref

d,a,'t,'pd,a,t,p(refVVd

иVVd,T't,P'p:AaTt,Pp

t't

'ttT,pT,p

T,pT,pt

)

 ;) :
1

Graphical interpretation

Security

Requirements

Application

Security Mechanism

Operating System

Security Criteria

Settings Providing Security

Х Х
Х Х
Х Х

Х Х

Х Х

Х ХAreas of Security

Settings Agreement

Security Criteria

Security

Criteria

Implementation: security control system

TIE

Operating

System

Variable Program Components

Composition

Compatibility

Settings

Security Settings

Security Requirements

Security

Policy

Exploitation

Conditions

Security Criteria

Integrity Conditions

Standards

TIE Model

Settings Processor

Stable Program Components

Cryptographic Methods

(checksums, hash, etc.)

Application
Security

Mechanism

M
o

n
it
o

ri
n

g

C
o

n
tr

o
l

M
o

n
it
o

ri
n

g

Monitoring

Control

User

No user

cycle

