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Trusted computer system

 Confidentiality

 Integrity

 Accessibility



How to reach the trustworthiness?

 Source code analysis

• Reliability models

 Security modeling and assurance

• Discretionary, mandatory, role-based, etc. models

• Security specification languages, calculus and processing tools

• Security monitoring and vulnerabilities detection

• Intrusion detection methods

 Cryptography

• Cryptographic algorithms and protocols

 Result: ‘point’ security.

 BUT INFORMATION ENVIRONMENT CONSTANTLY CHANGES 



Integrity problem

 Confidentiality

 Accessibility

• Traditional methods

 Integrity

• Data-relevant definition: assurance that information is 

authentic and complete (hash, checksums)

• Functional integrity (wholeness of the system)?

Contradictory versions of the program libraries

Software Updates

New access permissions for new users 



Components of information environment
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Stable vs. variable

 Stable components:

• the functional modules that are founded at system designing and 
building (executables, OS elements, data bases) 

Long life-cycle -> cryptographic methods 

 Variable components:

• modified settings (security parameters: system registry, access 
control rights; session characteristics: active users, applications list

• Huge number of parameters undergoing control 

Short and tiny life cycle -> ? 

Integrity is ensuring 
that information environment is stable (invariable)

(not in point but in area)



System state elements

a set of program components Pp
i

, where P depicts the set of TIE's 

components, Ni . A program item is specified with a program type TT
n

, 

where T is a set of program types (e.g., system software, user application, 
security mechanism), Nn ; 

 

 

a set of program attributes }a{A nn T

j

T , where 
n

T  is a program type, 
j

a is a 

component of program attribute; Nj . Program attributes are the settings of 

the TIE's program components; 

 

 

a set of attribute values }v{V inin p,T

k

p,T , where ) A,, T(pvarv nin T

ni

p,T

k
, Nk . 

Function TT VAT: Pvar for the program item Pp
i

 of type TT
n

 with 

attributes nTA returns the values nTV . 



Formal integrity conditions

TTTT VATPVATP:ref   : 

set of attributes Tt Aa  with values p,tp,t Vv   

program component Pp  of the type Tt   

points to the set of AGREED attributes T't Aa  with values 'p,'t'p,'t Vv of 

another program item P'p  of the type T't .  

One ( TV ) or several ( TT VV ) values refer to another program item: 

)VV(ATPVATP:ref TTT .  

The reverse function )VV(ATP)VV(ATP:ref TTTT 1  

defines area TT VV  for each point from TT VV .  

Symmetric relations has not to be empty: 

.d'd;'d,a,t,pd,a,'t,'p(ref

d,a,'t,'pd,a,t,p(refVVd

иVVd,T't,P'p:AaTt,Pp

t't

'ttT,pT,p

T,pT,pt

  )
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Graphical interpretation
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Implementation: security control system
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