In the track of agent protection: A solution based on cryptographic hardware

Antonio Maña

amg@lcc.uma.es

Safe Society Labs University of Malaga

St. Petersburg, Sept. 2010

Outline

- Introduction to Agents
- Description of the problem
- Trusted Computing
- SecMiLiA
- Conclusions

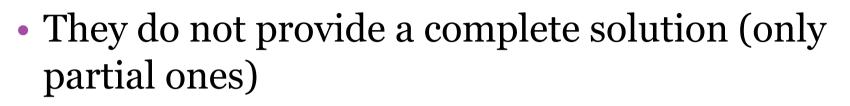
Introduction to agents

- A mobile agent is defined as:
 - an autonomous,
 - reactive,
 - goal oriented,
 - adaptive,
 - persistent,
 - socially aware software entity.
- Mobile agents can actively migrate from host to host and continue its execution on the destination host
- Mobile agents include code, data and execution state
- They are not bound to the system on which they begin execution
- They are free to travel among the hosts in the network

Description of the Problem

- Agents represent an appropriate paradigm for many new scenarios such asambient intelligence, ubiquitous, autonomic and cloud computing
- Security problems
 - One way protection
 - Protection of agents
 - Sanctuaries
 - Obfuscation of code
 - Watermarking
 - Protected Computing
 - Protection of agencies
 - SandBoxing
 - Proof-Carrying code & Proof Referencing Code
 - (+ others like Path Histories, State Appraisal, Signed Code techniques....)

Description of the problem


- Current agent platforms have a low level of security (Aglets, Cougaar, JACK, JADE, JAVACT, AgentSpeak)
- We target a two-way protection
- In previous works we have proposed an approach based on the Protected Computing paradigm and a protocol for the remote attestation of the agencies where agents are going to run
- In this paper we present a solution based on the Trusted Computing technology and in particular:
 - An enhancement of the previous protocol based on the use of special TPM keys + results of formal verification
 - A library that implements it
 - The relation of this solution with cloud computing

Description of the problem

- We focus on solving the malicious host problem
- Our target is to develop a trusted migration process
- Our solution contributes both to protecting agents and platforms
 Trusted Platform Module
- We base our solution on the TPM functionalities
- Shows a possible independent application of the TPM

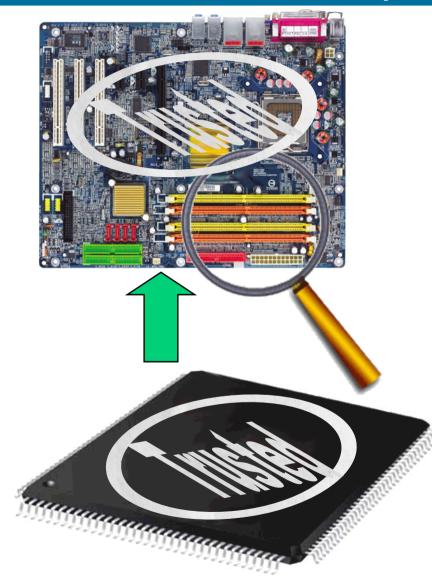
Problems of the Current approaches

- Their integration in current agent tools is not easy (f.i JADE,JavaAct,...)
- Do not use state of the art security
- Too hard to apply for non security experts.

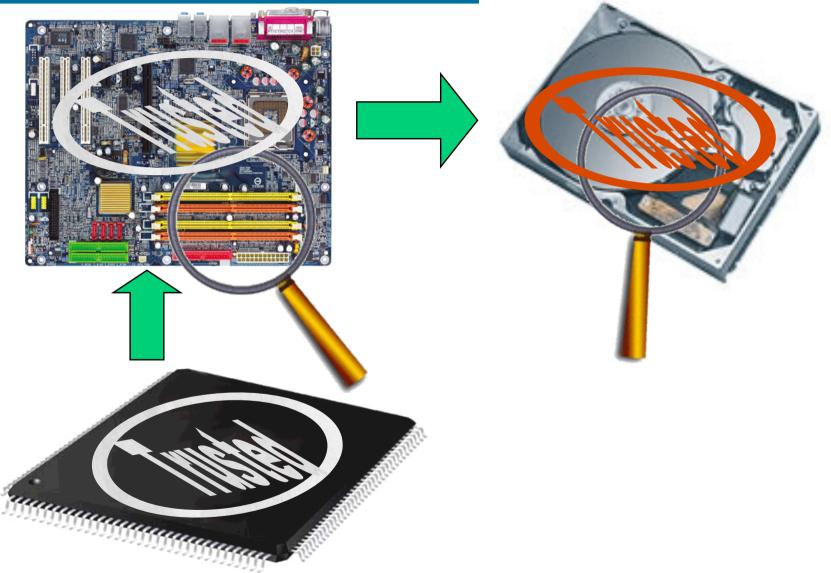
Trusted Computing

•Origin

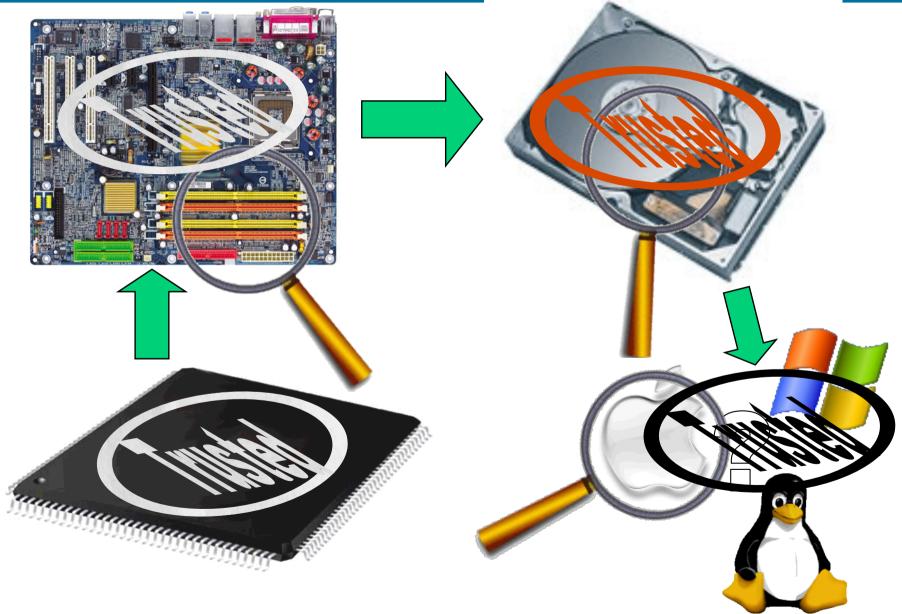
Bill Arbaugh, Dave Farber and Jonathan Smith, "A Secure and Reliable Bootstrap Architecture"


IEEE Symposium on Security and Privacy (1997)

•Current Status Trusted Computing Group Specifications, Available from www.trustedcomputinggroup.org


Trusted Computing

- Basis
 - A tamperproof hardware device is user to build a fully secured system **bottom-up**
 - The basic idea is to create a chain of trust between all elements in the computing system.
 - Normally in TC:
 - In a Trusted Computing scenario a trusted application runs exclusively on top of trusted supporting software.
 - A tamperproof hardware device analyses the BIOS of the computer and, in case it is recognized as trusted, passes control to it.
 - This process is repeated for the boot sector, the OS and the applications...



Trusted Computing

- Main Advantages:
 - The necessary trusted hardware is integrated in the heart of the computing system
 - Fully *secure* systems are possible...
 - well, ... provided everything is perfect !
- This approach can be used to provide a secure environment for agent execution
- BUT:
 - TC is extremely tricky and difficult to apply in practice
 - TC can give a (dangerous) false impression of security

SecMiLiA Preliminaries: FIPA & JADE

- FIPA (Federation of Information Processing Agents) is the standards organization for agents and multi-agent systems (now officially part of the IEEE).
- JADE (Java Agent DEvelopment framework) is a software Framework fully implemented in Java language.
 - It simplifies the implementation of multi-agent systems through a middleware that complies with the FIPA specifications and through a set of graphical tools that supports the debugging and deployment phases.

SI

- Each hosting platform contains a TPM.
- The state of the Trusted Agent platform is measured and the measurements stored to the TPM PCRs.
- The initial host platform from which the mobile agent originates is considered trusted.
- Any static agent information is digitally signed by the originator.
- The use of PCR registers to store measurements (representing a trusted agency's software state) is consistent amongst all the trusted platforms.
- Every Trusted platform has registered at least one of their AIKs with a Privacy-CA which is known to the other trusted agencies participating in the system.

- Each hosting platform contains a TPM.
- The state of the Trusted Agent platform is measured and the measurements stored to the TPM PCRs.
- The initial host platform from which the obile agent originates is considered trusted.
 Platform Configuration Registers
- Any static agent information is digitally signed by the originator.
- The use of PCR registers to store measurements (representing a trusted agency's software state) is consistent amongst all the trusted platforms.
- Every Trusted platform has registered at least one of their AIKs with a Privacy-CA which is known to the other trusted agencies participating in the system.

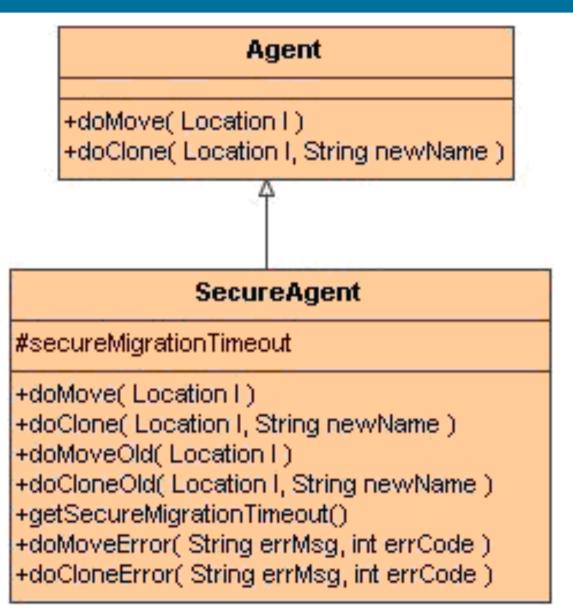
SI

- Each hosting platform contains a TPM.
- The state of the Trusted Agent platform is measured and the measurements stored to the TPM PCRs.
- The initial host platform from which the mobile agent originates is considered trusted.
- Any static agent information is digitally signed by the originator.
- The use of PCR registers to store measurements (representing a trusted agency's software state) is consistent amongst all the trusted platforms.
- Every Trusted platform has registered at least one of their AIKs with a Privacy-CA which is known to the other trusted agencies participating in the system.

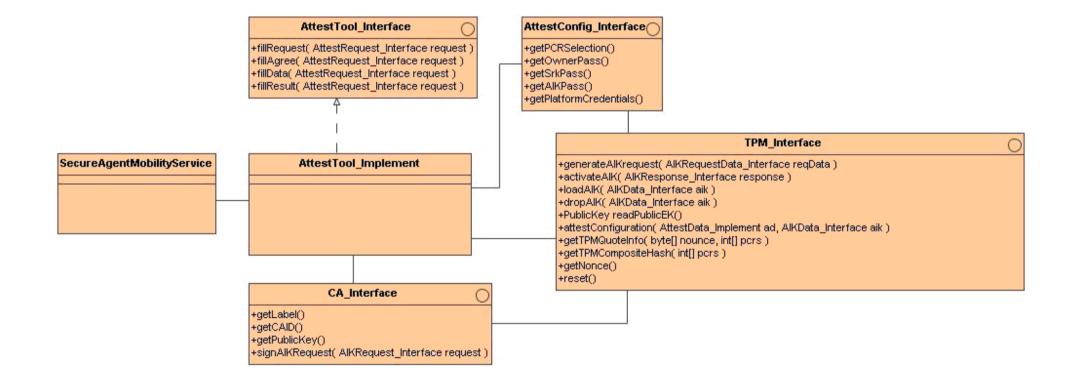
- Each hosting platform contains a TPM.
- The state of the Trusted Agent platform is measured and the measurements stored to the TPM PCRs.
- The initial host platform from which the mobile agent originates is considered trusted.
- Any static agent information is digitally signed by the originator.
 Attestation Identity Keys
- The use of PCR regiss to store measurements (representing a trusted agency' software state) is consistent amongst all the trusted platforms.
- Every Trusted platform has registered at least one of their AIKs with a Privacy-CA which is known to the other trusted agencies participating in the system.

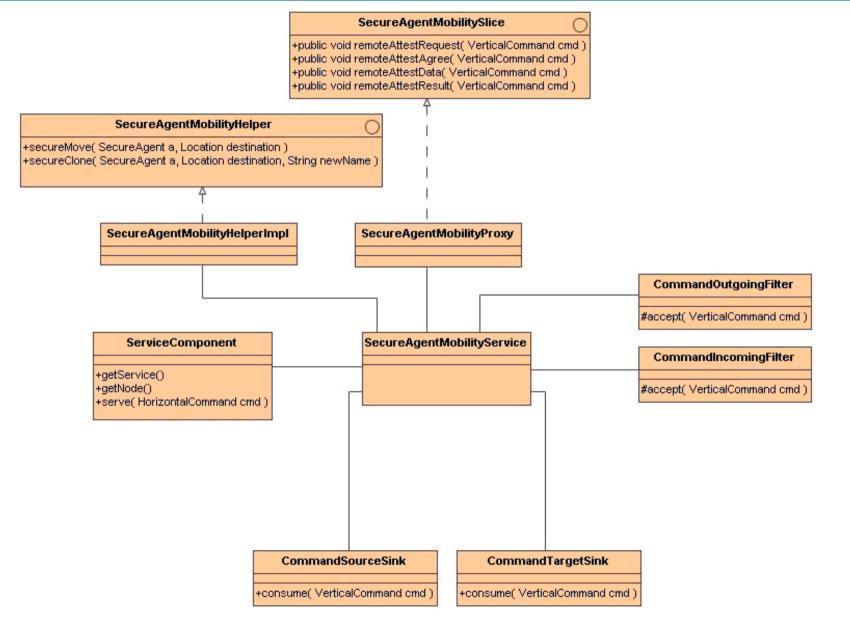
SI

- Each hosting platform contains a TPM.
- The state of the Trusted Agent platform is measured and the measurements stored to the TPM PCRs.
- The initial host platform from which the mobile agent originates is considered trusted.
- Any static agent information is digitally signed by the originator.
- The use of PCR registers to store measurements (representing a trusted agency's software state) is consistent amongst all the trusted platforms.
- Every Trusted platform has registered at least one of their AIKs with a Privacy-CA which is known to the other trusted agencies participating in the system.


SecMiLiA Architecture

Secure Migration Library for Agents	
JADE	TPM4Java
Java Platform	


User view



Hiding TPM complexity

Hiding TPM complexity for agent services

Agents and Cloud computing

- Cloud computing will not reach all its potential until we can securely run our own software on it
- Running our own software in the cloud will present the same security challenges as running our agents in non-trusted agencies
- The presented solution can be a good basis for this purpose and we are currently addressing this problem in the PASITE European Project

Conclusions and further work

- Security is essential for any practical computing system. Moreover, it is essential in agent based systems, ambient intelligence, embedded systems, cloud computing...
- Security must be easy to integrate for software developers
- Trusted computing can provide interesting tools to create security solutions for all these scenarios
- We have introduced the application of the presented system for cloud computing
- We are studying the ways to overcome the rigidity of the current model by using external attestation servers and semantic technologies

Thanks! Any questions?

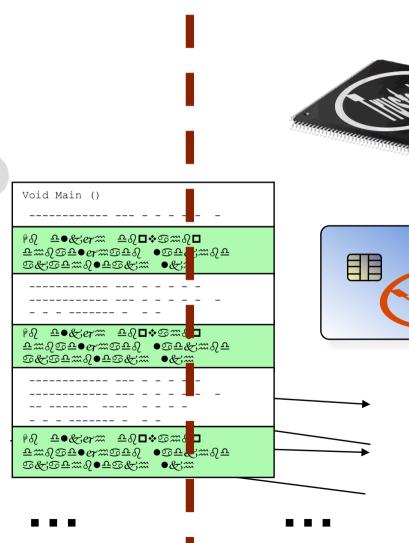
Proof Carrying code

- Is a general mechanism for verifying that the agent code can be executed in the host system in a secure way
- Every code fragment includes a detailed proof called code certificate (not to be confused with cryptographic certificates) that can be used to determine whether the security policy of the host is satisfied by the agent.
- As a technique designed for general mobile code, it is not difficult to apply it in agent-based technology.
- The use of this technique in agent systems allows agencies to verify the code certificates
- A combination with our TC approach is suitable

•Origin

Schaumüller-Bichl, I. and Piller, E. **"A Method of Software Protection Based on the Use of Smart Cards and Cryptographic Techniques"** Eurocrypt'84. 1984.

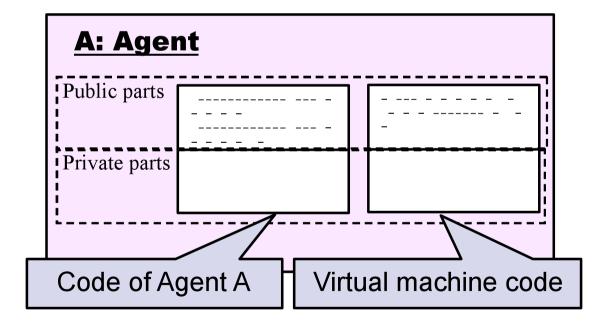
Current status


Maña, A., López, J., Ortega, J., Pimentel, E., Troya, J.M. **"A Framework for Secure Execution of Software"** International Journal of Information Security, Vol. 3, Issue 2, Springer-Verlag, 2004.

Maña, A., Muñoz, A. **"Mutual Protection for Multiagent Systems"** 3rd Intl. Workshop on Safety and Security in Multiagent Systems (SASEMAS '06), Hakodate, Japan, 2006.

- Basis
 - Partitioning of the software elements into two or more parts. Some of the parts are executed in a secure processor, while others are executed in a normal (non-trusted) processor
 - A secure tamperproof coprocessor (not necessarily hardware) capable of executing code "on the fly" is required
 - The basic idea is to divide the application code into two mutually dependent parts.
 - The public part cannot be used to obtain the protected part
 - The communication trace between the parts cannot be used to obtain the protected part

Untrusted



2811

Trusted

00100

• Dynamic Mutual Protection based on PC

- Main Advantages:
 - Independent secure applications are possible
 - Both applications and computer owners can control their security settings
 - Different secure coprocessors can be used (even simultaneously)
 - Mobile and replaceable devices such as Smart Cards can be used (*appropriate security*)
 - Low complexity and inexpensive solution
 - Different manufacturers (room for competition and market-driven security)
 - O.S. and HW platform agnostic