
In the track of agent protection:
A solution based on cryptographic hardware

Antonio Maña
amg@lcc.uma.es
Safe Society Labs
University of Malaga

St. Petersburg, Sept. 2010

New Trends and Challenges in Computer Network Security, MMM-ACNS'10

Outline
• Introduction to Agents

• Description of the problem

• Trusted Computing

• SecMiLiA

• Conclusions

Introduction to agents

• A mobile agent is defined as:
▫  an autonomous,
▫  reactive,
▫  goal oriented,
▫  adaptive,
▫  persistent,
▫  socially aware software entity.

• Mobile agents can actively migrate from host to host and
continue its execution on the destination host

• Mobile agents include code, data and execution state

• They are not bound to the system on which they begin
execution

• They are free to travel among the hosts in the network

Description of the Problem

• Agents represent an appropiate paradigm for many
new scenarios such asambient intelligence,
ubiquitous, autonomic and cloud computing

• Security problems
▫ One way protection

 Protection of agents
 Sanctuaries
 Obfuscation of code
 Watermarking
 Protected Computing

 Protection of agencies
 SandBoxing
 Proof-Carrying code & Proof Referencing Code
  (+ others like Path Histories, State Appraisal, Signed Code

techniques….)

Description of the problem

• Current agent platforms have a low level of security
(Aglets, Cougaar, JACK, JADE, JAVACT,
AgentSpeak)

• We target a two-way protection

•  In previous works we have proposed an approach based
on the Protected Computing paradigm and a protocol for
the remote attestation of the agencies where agents are
going to run

• In this paper we present a solution based on the
Trusted Computing technology and in particular:
▫ An enhancement of the previous protocol based on the

use of special TPM keys + results of formal verification
▫ A library that implements it
▫ The relation of this solution with cloud computing

Description of the problem

• We focus on solving the malicious host problem

• Our target is to develop a trusted migration
proccess

• Our solution contributes both to protecting
agents and platforms

• We base our solution on the TPM functionalities

• Shows a possible independent application of the
TPM

Trusted Platform Module

Problems of the Current approaches

• They do not provide a complete solution (only
partial ones)

• Their integration in current agent tools is not
easy (f.i JADE,JavaAct,...)

• Do not use state of the art security

• Too hard to apply for non security experts.

Trusted Computing

• Origin
Bill Arbaugh, Dave Farber and Jonathan Smith,

“A Secure and Reliable Bootstrap
Architecture”

IEEE Symposium on Security and Privacy (1997)

• Current Status
Trusted Computing Group Specifications,

Available from
www.trustedcomputinggroup.org

Trusted Computing

• Basis
▫ A tamperproof hardware device is user to build a

fully secured system bottom-up
▫ The basic idea is to create a chain of trust

between all elements in the computing system.
▫ Normally in TC:
 In a Trusted Computing scenario a trusted

application runs exclusively on top of trusted
supporting software.

 A tamperproof hardware device analyses the BIOS of
the computer and, in case it is recognized as trusted,
passes control to it.
 This process is repeated for the boot sector, the OS and

the applications...

Trusted Boot 101 Graphically

Trusted Boot 101 Graphically

Trusted Boot 101 Graphically

Trusted Boot 101 Graphically

Trusted Computing

• Main Advantages:
▫ The necessary trusted hardware is integrated in the

heart of the computing system
▫ Fully secure systems are possible…
 well, … provided everything is perfect !

• This approach can be used to provide a secure
environment for agent execution

• BUT:
▫ TC is extremely tricky and difficult to apply in practice
▫ TC can give a (dangerous) false impression of security

SecMiLiA Preliminaries: FIPA & JADE

• FIPA (Federation of Information Processing Agents)
is the standards organization for agents and multi-
agent systems (now officially part of the IEEE).

• JADE (Java Agent DEvelopment framework) is a
software Framework fully implemented in Java
language.
▫ It simplifies the implementation of multi-agent

systems through a middleware that complies with the
FIPA specifications and through a set of graphical tools
that supports the debugging and deployment phases.

SecMiLiA requirements
• Each hosting platform contains a TPM.

• The state of the Trusted Agent platform is measured and the
measurements stored to the TPM PCRs.

• The initial host platform from which the mobile agent
originates is considered trusted.

• Any static agent information is digitally signed by the
originator.

• The use of PCR registers to store measurements (representing
a trusted agency’s software state) is consistent amongst all the
trusted platforms.

• Every Trusted platform has registered at least one of their
AIKs with a Privacy-CA which is known to the other trusted
agencies participating in the system.

SecMiLiA requirements
• Each hosting platform contains a TPM.

• The state of the Trusted Agent platform is measured and the
measurements stored to the TPM PCRs.

• The initial host platform from which the mobile agent
originates is considered trusted.

• Any static agent information is digitally signed by the
originator.

• The use of PCR registers to store measurements (representing
a trusted agency’s software state) is consistent amongst all the
trusted platforms.

• Every Trusted platform has registered at least one of their
AIKs with a Privacy-CA which is known to the other trusted
agencies participating in the system.

Platform Configuration Registers

SecMiLiA requirements
• Each hosting platform contains a TPM.

• The state of the Trusted Agent platform is measured and the
measurements stored to the TPM PCRs.

• The initial host platform from which the mobile agent
originates is considered trusted.

• Any static agent information is digitally signed by the
originator.

• The use of PCR registers to store measurements (representing
a trusted agency’s software state) is consistent amongst all the
trusted platforms.

• Every Trusted platform has registered at least one of their
AIKs with a Privacy-CA which is known to the other trusted
agencies participating in the system.

SecMiLiA requirements
• Each hosting platform contains a TPM.

• The state of the Trusted Agent platform is measured and the
measurements stored to the TPM PCRs.

• The initial host platform from which the mobile agent
originates is considered trusted.

• Any static agent information is digitally signed by the
originator.

• The use of PCR registers to store measurements (representing
a trusted agency’s software state) is consistent amongst all the
trusted platforms.

• Every Trusted platform has registered at least one of their
AIKs with a Privacy-CA which is known to the other trusted
agencies participating in the system.

Attestation Identity Keys

SecMiLiA requirements
• Each hosting platform contains a TPM.

• The state of the Trusted Agent platform is measured and the
measurements stored to the TPM PCRs.

• The initial host platform from which the mobile agent
originates is considered trusted.

• Any static agent information is digitally signed by the
originator.

• The use of PCR registers to store measurements (representing
a trusted agency’s software state) is consistent amongst all the
trusted platforms.

• Every Trusted platform has registered at least one of their
AIKs with a Privacy-CA which is known to the other trusted
agencies participating in the system.

SecMiLiA Architecture

User view

Hiding TPM complexity

Hiding TPM complexity for agent services

Agents and Cloud computing

• Cloud computing will not reach all its potential until
we can securely run our own software on it

• Running our own software in the cloud will present
the same security challenges as running our agents
in non-trusted agencies

• The presented solution can be a good basis for this
purpose and we are currently addressing this
problem in the PASSIVE European Project

Conclusions and further work

• Security is essential for any practical computing system.
Moreover, it is essential in agent based systems, ambient
intelligence, embedded systems, cloud computing…

• Security must be easy to integrate for software
developers

• Trusted computing can provide interesting tools to create
security solutions for all these scenarios

• We have introduced the application of the presented
system for cloud computing

• We are studying the ways to overcome the rigidity of the
current model by using external attestation servers and
semantic technologies

Thanks! Any questions?

New Trends and Challenges in Computer Network Security, MMM-ACNS'10 St. Petersburg, Sept. 2010

Proof Carrying code
• Is a general mechanism for verifying that the

agent code can be executed in the host system
in a secure way

• Every code fragment includes a detailed proof
called code certificate (not to be confused with
cryptographic certificates) that can be used to
determine whether the security policy of the
host is satisfied by the agent.

• As a technique designed for general mobile
code, it is not difficult to apply it in agent-based
technology.

• The use of this technique in agent systems
allows agencies to verify the code certificates

• A combination with our TC approach is
suitable

Protected Computing
• Origin

Schaumüller-Bichl, I. and Piller, E.
“A Method of Software Protection Based on the Use of

Smart Cards and Cryptographic Techniques” Eurocrypt’84.
1984.

• Current status
Maña, A., López, J., Ortega, J., Pimentel, E., Troya, J.M.
“A Framework for Secure Execution of Software”

International Journal of Information Security,
Vol. 3, Issue 2, Springer-Verlag, 2004.

Maña, A., Muñoz, A.
“Mutual Protection for Multiagent Systems”

3rd Intl. Workshop on Safety and Security in Multiagent Systems
(SASEMAS '06), Hakodate, Japan, 2006.

Protected Computing
• Basis
▫ Partitioning of the software elements into two or more

parts. Some of the parts are executed in a secure
processor, while others are executed in a normal
(non-trusted) processor
▫ A secure tamperproof coprocessor (not necessarily

hardware) capable of executing code “on the fly” is
required
▫ The basic idea is to divide the application code into two

mutually dependent parts.
 The public part cannot be used to obtain the protected

part
 The communication trace between the parts cannot be

used to obtain the protected part

Protected Computing
Untrusted Trusted

  
 
 +

  
 
 +

  
 
 +

Void Main ()

 ------------ --- - - - - - -

 ------------ --- - - - - -
 ------------ --- - - - - - -
 - - - ------- - - -

 ------------ --- - - - - -
 ------------ --- - - - - - -
 -- ------ ---- - - - -
 - - - ------- - - -

… …

Protected Computing

• Dynamic Mutual Protection based on PC

Protected Computing
• Main Advantages:
▫ Independent secure applications are possible
▫ Both applications and computer owners can control

their security settings
▫ Different secure coprocessors can be used (even

simultaneously)
▫ Mobile and replaceable devices such as Smart Cards

can be used (appropriate security)
▫ Low complexity and inexpensive solution
▫ Different manufacturers (room for competition and

market-driven security)
▫ O.S. and HW platform agnostic

