
Policy-Based Design and Verification for Mission
Assurance

Shiu-Kai Chin1, Sarah Muccio2, Susan Older1,
and Thomas Vestal1,2

1Syracuse University, Syracuse, New York
2Air Force Research Laboratory, Rome, New York

1 / 15

Why Trust and Assurance Matter

“That is, the pilot can trust information that a target is the foe, not
innocent inhabitants of a school building or hospital or embassy. . . .
This new way of war is data dependent. So we need to think in
terms of trust and securing trust.”

Michael Wynne, Former SECAF

“No operator should ever have to ask . . . ‘Will my weapon work?’
. . . Cyberspace warfare creates just this possibility.”

General John A. Shaud, USAF

2 / 15

Why Trust and Assurance Matter

“That is, the pilot can trust information that a target is the foe, not
innocent inhabitants of a school building or hospital or embassy. . . .
This new way of war is data dependent. So we need to think in
terms of trust and securing trust.”

Michael Wynne, Former SECAF

“No operator should ever have to ask . . . ‘Will my weapon work?’
. . . Cyberspace warfare creates just this possibility.”

General John A. Shaud, USAF

2 / 15

Why Trust and Assurance Matter

“That is, the pilot can trust information that a target is the foe, not
innocent inhabitants of a school building or hospital or embassy. . . .
This new way of war is data dependent. So we need to think in
terms of trust and securing trust.”

Michael Wynne, Former SECAF

“No operator should ever have to ask . . . ‘Will my weapon work?’
. . . Cyberspace warfare creates just this possibility.”

General John A. Shaud, USAF

2 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Introduction
Intended audience

• Designers, builders, specifiers, buyers, and evaluators of secure
and trustworthy computer and information systems

Focus: access policies and concepts of operation

• hardware, virtual machines, networks

• credentials, authority, delegation

• confidentiality & integrity policies

Logic is a means to an end

• means of description

• inference rules

• theorem-based design & verification (proofs)

Designers who sleep well combine experience with math & logic

3 / 15

Our Viewpoint

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

When given a command/request, trust assumptions, credentials,
jurisdiction, authority, and policy
• Logically justify whether the command/request is honored or

not
• Anything less is regarded as a don’t know, don’t care, or

incompetence

No different for hardware designers and verifiers

4 / 15

Our Viewpoint

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

When given a command/request, trust assumptions, credentials,
jurisdiction, authority, and policy
• Logically justify whether the command/request is honored or

not
• Anything less is regarded as a don’t know, don’t care, or

incompetence

No different for hardware designers and verifiers

4 / 15

Our Viewpoint

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

When given a command/request, trust assumptions, credentials,
jurisdiction, authority, and policy
• Logically justify whether the command/request is honored or

not
• Anything less is regarded as a don’t know, don’t care, or

incompetence

No different for hardware designers and verifiers

4 / 15

Our Viewpoint

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

When given a command/request, trust assumptions, credentials,
jurisdiction, authority, and policy
• Logically justify whether the command/request is honored or

not
• Anything less is regarded as a don’t know, don’t care, or

incompetence

No different for hardware designers and verifiers

4 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

A Logical Approach to Access Control
Access-control logic is used in the same way hardware engineers
use propositional logic to specify, design, and verify hardware
• Modification of multi-agent propositional modal logic created

by Abadi, Burrows, Lampson, and Plotkin
• Implemented as a conservative extension to the Cambridge

Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
(joint work done with Lockwood Morris)

• Routinely taught to SU graduate students in Principles of
Distributed Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40
universities as part of Air Force Research Lab’s Advanced
Course in Engineering for Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance

5 / 15

Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to
be] accomplish[ed] and how it will be done using available
resources. It describes how the actions of . . . components
and supporting organizations will be integrated,
synchronized, and phased to accomplish the mission . . .”

JP 5-0, Joint Operation Planning
Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

6 / 15

Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to
be] accomplish[ed] and how it will be done using available
resources. It describes how the actions of . . . components
and supporting organizations will be integrated,
synchronized, and phased to accomplish the mission . . .”

JP 5-0, Joint Operation Planning
Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

6 / 15

Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to
be] accomplish[ed] and how it will be done using available
resources. It describes how the actions of . . . components
and supporting organizations will be integrated,
synchronized, and phased to accomplish the mission . . .”

JP 5-0, Joint Operation Planning
Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

6 / 15

Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to
be] accomplish[ed] and how it will be done using available
resources. It describes how the actions of . . . components
and supporting organizations will be integrated,
synchronized, and phased to accomplish the mission . . .”

JP 5-0, Joint Operation Planning
Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

6 / 15

Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to
be] accomplish[ed] and how it will be done using available
resources. It describes how the actions of . . . components
and supporting organizations will be integrated,
synchronized, and phased to accomplish the mission . . .”

JP 5-0, Joint Operation Planning
Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

6 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Purpose & Preview

Purpose

• Show how we describe and verify the logical consistency of
CONOPS

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

• Formally reasoning about CONOPS provides insight and
precision into what is being relied upon, trust assumptions,
policies, delegations, and flow of control

Preview

• Overview of the logic

• General representation of CONOPS

• A specific example

• Conclusions

7 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W)

J = PName→ P(W ×W)

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]

8 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi]] = W

then EM[[C]] = W

• All rules are sound

• All verified in HOL-4
K-5 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ

9 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

A Simple Proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

10 / 15

General Form of CONOPS

“The CONOPS . . . describes how the actions of . . . components
and supporting organizations will be integrated, synchronized, and
phased to accomplish the mission . . .”

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3

P3 says s3 ...

• Principals are actors

• Assumptions about jurisdiction, policy, and trust are explicit

• Each step in CONOPS is a derived inference rule

11 / 15

General Form of CONOPS

“The CONOPS . . . describes how the actions of . . . components
and supporting organizations will be integrated, synchronized, and
phased to accomplish the mission . . .”

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3

P3 says s3 ...

• Principals are actors

• Assumptions about jurisdiction, policy, and trust are explicit

• Each step in CONOPS is a derived inference rule

11 / 15

General Form of CONOPS

“The CONOPS . . . describes how the actions of . . . components
and supporting organizations will be integrated, synchronized, and
phased to accomplish the mission . . .”

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3

P3 says s3 ...

• Principals are actors

• Assumptions about jurisdiction, policy, and trust are explicit

• Each step in CONOPS is a derived inference rule

11 / 15

General Form of CONOPS

“The CONOPS . . . describes how the actions of . . . components
and supporting organizations will be integrated, synchronized, and
phased to accomplish the mission . . .”

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3

P3 says s3 ...

• Principals are actors

• Assumptions about jurisdiction, policy, and trust are explicit

• Each step in CONOPS is a derived inference rule

11 / 15

Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center

12 / 15

Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center

12 / 15

Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center

12 / 15

Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center

12 / 15

Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center

12 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)

13 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ

14 / 15

Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems

15 / 15

Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems

15 / 15

Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems

15 / 15

Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems

15 / 15

Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems

15 / 15

