

Attack and Defense Modeling with BDMP (Boolean logic Driven Markov Processes)

September 8th 2010

MMM-ACNS 2010, St Petersburg, Russia

Ludovic Piètre-Cambacédès Marc Bouissou EDF R&D

Agenda

Introduction

Graphical attack modeling

Attack modeling with BDMP

- Formalism description
- Example & quantifications

Defensive aspects modeling

- Augmented theoretical framework
- Use-case & quantifications
- On-going work, perspectives
 - Recent advance, future work

Conclusion and Q&A

Readability, scalability, modeling and quantification capabilities

BDMP, the potential for an attractive trade-off

Interest proven in reliability and safety engineering

- Invented and used at EDF (NPP safety, substations, data centers reliability,...)
- Complete theory and software framework

⇒ Adaptation to attack modeling

BDMP - Application to attack modeling

Main ideas

- New semantics to the graphical representation of attack trees
- Markov processes are associated to the leaves (actions/events)
 - □ Two modes, "Active" and "Idle"
 - □ Mode of a leaf = f (states of some selected other leaves)
- Dynamic, model attack sequences
- Graphical elements
 - $\mathsf{BDMP} = \{\mathcal{A}, r, T, \{P_i\}\}$
 - \mathcal{A} = Attack Tree, r = top event,
 - G1 = secondary top, T = trigger,

 P_i = "triggered" Markov processes

A first feel: a simple Remote Access Server attack

RAS attack BDMP – Step 0 (attack just started)

 \leftarrow

 \leftarrow

 \leftarrow

RAS attack BDMP – Attacker's objective reached

A zoom on the three basic security leaves

A zoom on the three basic security leaves

A zoom on the three basic security leaves

Leaf type & icon	Idle Mode (X _i =0)	Transfer between modes	Active Mode (X _i =1)		
Attacker Action (AA)	Potential Success	P⇔O (with $Pr = 1$) S⇔S (with $Pr = 1$)	$\underline{\Omega}$ n-going λ \underline{S} uccess $S_i \leftarrow 1$		
Instantaneous Security Event	Potential Realized	P⇔NR (with $Pr=1-\gamma$) P⇔R (with $Pr = \gamma$) R⇔R (with $Pr = 1$) P⇔NR (with $Pr = 1$)	$\underbrace{\underline{N}\text{ot}}_{\underline{\mathbf{R}}\text{ealized}} \lambda \qquad \underbrace{\underline{\mathbf{R}}\text{ealized}}_{S_i \leftarrow 1}$		
Timed Security Event	$\begin{array}{c c} \underline{\mathbf{P}} \text{otential} \\ \hline \\ \underline{\mathbf{N}} \text{ot} \\ \underline{\mathbf{R}} \text{ealized} \\ \hline \\ \hline \\ \underline{\mathbf{R}} \text{ealized} \\ \hline \\ \hline \\ \\ \underline{\mathbf{S}}_{i} \leftarrow 1 \end{array}$	P⇔NR (with $Pr = 1$) NR⇔NR (with $Pr=1$) R⇔R (with $Pr = 1$)	$\underbrace{\underline{\mathbf{N}}_{ot}}_{\mathbf{R}ealized} \lambda \qquad \underbrace{\mathbf{R}}_{ealized}$		

Formal foundations – snapshot 1/3

A (security-oriented) BDMP (A, r, T, $\{P_i\}$) is made of

- An attack tree $\mathcal{A} = \{E, L, g\}$
 - a set E = G U B, where G is a set of gates and B a set of basic events
 - (*E*, *L*) a directed acyclic graph, with *L* a set of oriented edges (i, j)
 - a function g, defining the gates $(g:G \rightarrow N^*)$, with g(i) the gate parameter k)

- A main top objective r
- Set of triggers *T* is a subset of $(E \{r\})x(E \{r\})$ such that $\forall (i, j) \in T, i \neq j \text{ and } \forall (i, j) \in T, \forall (k, l) \in T, i \neq k \Rightarrow j \neq l$

Formal foundations – snapshot 2/3

- $P = \{P_i\}_{i \in E}$, triggered Markov Processes $\{Z_0^i(t), Z_1^i(t), f_{0 \to 1}^i, f_{1 \to 0}^i\}$
 - $Z_0^i(t)$ and $Z_1^i(t)$ two homogeneous Markov process
 - $f_{0\to 1}^{i}(x)$ and $f_{1\to 0}^{i}(x)$ two "probability transfer functions"
 - For k in {0, 1} (modes), A_k^i state-space of $Z_k^i(t)$
 - $S_k^i \subset A_k^i$, subset that generally corresponds to attacker action successes states (or event realization states)
 - For any $x \in A_0^i$, $f_{0 \to 1}^i(x)$ is a probability distribution on A_1^i such that if $x \in S_0^i$, then $\sum_{j \in S_1^i} (f_{0 \to 1}^i(x))(j) = 1$
 - For any $x \in A_1^i$, $f_{1 \to 0}^i(x)$ is a probability distribution on A_0^i such that if $x \in S_1^i$, then $\sum_{j \in S_0^i} (f_{1 \to 0}^i(x))(j) = 1$

Formal foundations – snapshot 3/3

Three families of Boolean functions of the time

Structure functions $(S_i)_{i \in E}$ $\forall i \in G, S_i = \sum_{j \in sons(i)} S_j \ge g(i)$ $\forall j \in B, S_j = Z_{X_j}^j \in S_{X_j}^j$, with $X_j = 0$ or 1, indicating the mode in which P_j is at time tProcess selectors $(X_i)_{i \in E}$ If i is a root of A, then $X_i = 1$ else

$$X_i \equiv \neg \left[\left(\forall x \in E, (x, i) \in L \Longrightarrow X_x = 0 \right) \lor \left(\exists x \in E / (x, i) \in T \land S_x = 0 \right) \right]$$

Relevance indicators $(Y_i)_{i \in E}$ If i = r (finale objective), then $X_i = 1$ else $Y_i \equiv (\exists x \in E/(x,i) \in L \land Y_x \land S_x = 0) \lor (\exists y \in E/(i, y) \in T \land S_y = 0)$

Mathematical properties

Robustness

- Theorem 1: $(S_i)(X_i)(Y_i)_{i \in E}$ are computable whatever the BDMP structure
- Theorem 2 : Any BDMP, defined at time t by the modes and the P_i states, is a valid homogeneous Markov process
- Combinatory reduction by "relevant event filtering"

- After attack step P_2 , all the others P_i are not relevant anymore: nothing is changed for "r" if we inhibit them
- The number of sequences leading to the top objective is
 - n, if we filter the relevant events $(\{P_1, Q\}, \{P_2, Q\}, ...)$
 - exponential otherwise $(\{P_1, Q\}, \{P_1, P_2, Q\}, \{P_1, P_3, Q\}, ...)$

Theorem 3: if the P_i are such that $\forall i \in B, \forall t, \forall t' \ge t, S_i(t) = 1 \Longrightarrow S_i(t') = 1^*$ $Pr(S_r(t)=1)$ is unchanged whether irrelevant event $(Y_i=0)$ are trimmed or not

Quantifications

- Time-domain analysis Leveraging the BDMP framework
 - Quantification tools, algorithms and optimizations
 - Efficient sequence exploration with trimming
 - Probability to reach the objective in a given time
 - Overall mean time to the attack success
 - Probability of each explored sequence
 - Ordered list of sequences
- Time-independent (static) Classical attack tree parameters
 - Monetary cost \rightarrow scenario cost, average attack cost
 - Boolean indicators (specific requirements, properties)
 - Minimum attacker skills

 $[\]lambda = 1.157 \times 10^{-5}$ (MTTS~a day) $\gamma = 0.1$

Results

Overall probability in a week = 0.422

- Overall MTTS = 22 days
- Ordered list of attack sequences (654 sequences)

	Sequences	Probability in a week	Average duration	Contrib.
1	<social eng="">Generic reconn., Email trap exec., User trapped</social>	1.059×10^{-1}	9.889×10^4	25.1%
2	<social eng="">Generic reconn., Phone trap exec., User trapped</social>	5.295×10^{-2}	9.889×10^{4}	12.5%
3	Bruteforce	2.144×10^{-2}	5.638×10^4	5.1%
4	<social eng=""></social> <keylogger><remote></remote> <physical> Physical reconn., Keylogger local installation, Password intercepted</physical></keylogger>	1.749×10^{-2}	2.976×10^5	4.1%
5	<social eng=""></social> <keylogger> <remote>Generic re- connaissance </remote><physical>Physical reconnaissance, Keylogger local installation, Password intercepted</physical></keylogger>	1.350×10^{-2}	3.677×10^{5}	3.2%
6	<social eng="">Generic reconnaissance, Email trap execution, User trapped(failure), Bruteforce</social>	1.259×10^{-2}	2.610×10^5	3.0%
20	<social eng=""></social> <keylogger><remote>Generic re- connaissance, Payload crafting, Appropriate payload, Pass- word intercepted</remote></keylogger>	2.500×10^{-3}	2.761×10^{5}	0.6%
34	<social eng=""></social> <keylogger> <remote>Generic re- conn., Payload crafting </remote> <physical>Crafted at- tachement opened, Appropriate payload, Physical reconn., Keylogger local installation, Password intercepted</physical></keylogger>	1.506×10^{-3}	4.594×10^{5}	0.4%

Detection Modeling

Main points

- The IOFA distinction: Initial / On-going / Final / A posteriori
- Changes in the parameters and/or in the BDMP structure
- Introduction of a "Detection status indicator" D_i
- Changes in the modes
 - "Active" is divided in "Active Undetected" and "Active Detected"
 - Allows for parameter change, and even leaf cancellation
 - The mode is selected based on $X_i D_i$

$X_i D_i$	00	01	10	11	
Mode	Idle (I)		Active Undetected (AU)	Active Detected (AD)	

New Markov models and probability transfer functions

New definitions – e.g. the Attacker Action leaf

 $[\]lambda = 1.157 \times 10^{-5}$ (MTTS~a day) $\gamma = 0.1$

Typical results

- Probability of success within a week: 0.364 (-14 %)
- Representative sequences (4231 vs 656)

	Sequences	Probability in a week	Average duration	Contrib.
1	<social eng="">Generic reconn., Email trap exec., User trapped</social>	1.091×10^{-1}	9.889×10^4	30.0%
2	<social eng="">Generic reconn., Phone trap exec., User trapped</social>	5.456×10^{-2}	9.889×10^{4}	15.0%
3	Bruteforce	2.144×10^{-2}	5.638×10^4	5.9%
4	<social eng="">Generic reconnaissance, Bruteforce</social>	1.055×10^{-2}	9.889×10^4	2.9%
	$([], Bruteforce) \times 9$			
14	<social eng=""><social eng=""><keylogger><remote>Generic recon- naissance, Payload crafting(no detection), Appropriate pay- load(no detection), Password intercepted</remote></keylogger></social></social>	2.250×10^{-3}	2.761×10^5	0.6%
	$([], Bruteforce) \times 2$			
17	<social eng="">Generic reconnaissance <social eng=""><keylogger> <remote>Payload crafting(no detection), Appropriate pay- load(no detection), Password intercepted</remote></keylogger></social></social>	1.923×10^{-3}	2.688×10^5	0.5%
	$([], Bruteforce) \times 2$			
20	<social eng="">Generic reconnaissance, Email trap exec., User trapped(failure and detection) <social Eng><keylogger><remote><remote> <physical>Physical reconn., Keylogger local installation, Password intercepted</physical></remote></remote></keylogger></social </social>	1.549×10^{-3}	5.991×10^5	0.4%

Recent advances and on-going work

- Extension of the KB3 software suite
 - Security-oriented "knowledge basis" (Figaro)
 - Directly usable by analysts
- Assist the analyst in security decisions
 - Sequences discrimination on attacker profile
 - Sequences presentation
 - Sensitivity analysis
- Safety and Security
 - Integrated models
 - Interdependenncies

Perspectives

Enhance usability

- (Internal) users feedback
- Develop the side-tools (sensitivity script HMI, etc.)
- Attack patterns library

Theoretical extensions

- Experiment different probability distributions (e.g., McQueen *et al.*)
- Integration with Bayesian networks
- Many attack trees extensions could be adapted
 - Intervals, fuzzy sets, OWA gates
 - Game theory
 - Etc.

Conclusion

Graphical security modeling

- Different balances between readability, scalability, modeling power and quantification capabilities
- A adaptation of BDMP to security modeling
 - An original and attractive trade-off
 - With a sound mathematical framework
 - Already an operational formalism

Inherent limits

- Attacker behavior stochastic modeling subjective probabilities
- More generally, security and quantitative assessments
- Complementary tool for the security analyst

Some references

On BDMP & KB3

- M. Bouissou, J.L. Bon, A new formalism that combines advantages of fault-trees and Markov models: Boolean logic Driven Markov Processes, Reliability Engineering and System Safety, Vol. 82, Issue 2, Nov. 2003, pp. 149-163
- M. Bouissou, Automated Dependability Analysis of Complex Systems with the KB3 Workbench: the Experience of EDF R&D, Proc. CIEM 2005, Bucharest, Romania, Oct. 2005

Marc Bouissou's homepage: <u>http://perso-math.univ-mlv.fr/users/bouissou.marc/</u>

On BDMP & Security

- L. Piètre-Cambacédès and M. Bouissou, "Beyond attack trees: dynamic security modeling with Boolean logic Driven Markov Processes (BDMP)," 8th European Dependable Computing Conference (EDCC-2010), Valencia, Spain, April 28-30, 2010
- MMM-ACNS paper !
- L. Piètre-Cambacédès and M. Bouissou, "Modeling safety and security interdepedencies with BDMP (Boolean logic Driven Markov Processes)," IEEE International Conference on Systems, Man, and Cybernetics (SMC 2010), Istanbul, Turkey, oct. 2010. Accepted.

Ludovic Pietre-Cambacedes' homepage: http://perso.telecom-paristech.fr/~pietreca/

Thank you for your attention!

Большое спасибо

Questions & Answers

