

Group-Centric Models for Secure and Agile Information Sharing

Ravi Sandhu Executive Director and Endowed Professor September 2010

ravi.sandhu@utsa.edu, www.profsandhu.com, www.ics.utsa.edu

Joint work with ICS colleagues Ram Krishnan, Jianwei Niu and Will Winsborough

© Ravi Sandhu

- > 3 succesful access control models in 40+ years
 > Discretionary Access Control (DAC)
 > Mandatory Access Control (MAC)
 also called Lattice-Based Access Control (LBAC)
 > Role-base Access Control (RBAC)
- > Numerous others defined and studied, implemented but no success
- Will Group Centric Models be the 4th element?
 Strong mathematical foundations
 - Strong intuitive foundations
 - Significant real-world deployment

Goal: Share but protect

Containment challenge

- Client containment
 - High assurance infeasible (e.g., cannot close the analog hole)
 - Low to medium assurance achievable
- Server containment
 - Will typically have higher assurance than client containment

Policy challenge

- How to construct meaningful, usable SIS policy
- How to develop an intertwined information and security model

PEI Models

Necessarily informal

Specified using users, subjects, objects, admins, labels, roles, groups, etc. in an ideal setting. Security analysis (objectives, properties, etc.).

Approximated policy realized using system architecture with trusted servers, protocols, etc. Enforcement level security analysis (e.g. stale information due to network latency, protocol proofs, etc.).

Technologies such as Cloud Computing, Trusted Computing, etc.

Implementation level security analysis (e.g. vulnerability analysis, penetration testing, etc.)

Software and Hardware

UTS

Fundamental Goal: Share BUT Protect

- I. Dissemination-Centric Sharing
 - Digital Rights Management
 - Enterprise Rights Management
 - > XrML
 - > Workflow-centric sharing
- II. Query-Centric Sharing
 - Queries wrt a protected dataset
 - > Privacy/confidentiality protection
 - More generally de-aggregation/inference protection

III.Group-Centric Sharing

- Sharing for a purpose
- Mission-centric sharing
- Purpose-centric sharing

- A community is a county or larger city size unit
 Clearly demarcated geographical boundary
 More or less aligned with governance boundary
- The ICS Center for Infrastructure Assurance and Security has a decade long experience conducting cyber security exercises and training for communities all across USA
 Community cyber security incident life cycle

Community Cyber Security

Community Cyber Security

UTSA

- Formal stateless behavioral model with
 Provable security properties
- Formal stateful enforceable model with
 - Proof of correspondence between stateless and stateful models

- > Operational aspects
 - Group operation semantics
 - $_{\circ}\;$ Add, Join, Leave, Remove, etc
 - Multicast group is one example
 - Object model
 - \circ Read-only
 - Read-Write (no versioning vs versioning)
 - User-subject model
 - Read-only Vs read-write
 - Policy specification
- > Administrative aspects
 - Authorization to create group, user join/leave, object add/remove, etc.

Core Properties

- > Authorization Persistence
 - Authorization cannot change unless some group event occurs

```
\kappa_0 = \forall u : U. \forall o : O. \forall v : V. \forall q : G.
         \Box(Authz(u, o, v, g, \mathbf{r}) \rightarrow (Authz(u, o, v, g, \mathbf{r}) \mathcal{W}(Join(u, g) \lor Leave(u, g)\lor
         Add(o, v, q) \lor Remove(o, v, q))))
\kappa_1 = \forall u : U. \forall o : O. \forall v : V. \forall q : G.
         \Box(Authz(u, o, v, g, \mathbf{w}) \rightarrow (Authz(u, o, v, g, \mathbf{w}) \mathcal{W} Leave(u, g)))
\kappa_2 = \forall u : U. \forall o : O. \forall v_1 : V. \forall g : G. \exists s : S. \exists v_2 : V.
         \Box(\neg \operatorname{Authz}(u, o, v_1, q, \mathbf{r}) \rightarrow (\neg \operatorname{Authz}(u, o, v_1, q, \mathbf{r}) \mathcal{W}(\operatorname{Join}(u, q) \lor
         Leave(u, q) \lor \operatorname{Add}(o, v_1, q) \lor \operatorname{Remove}(o, v_1, q) \lor
         CreateO(o, v_1, q) \lor update(s, o, v_2, v_1, q))))
\kappa_3 = \forall u : U. \forall o : O. \forall v_1 : V. \forall g : G. \exists s : S. \exists v_2 : V.
         \Box(\neg \operatorname{Authz}(u, o, v_1, g, \mathbf{w}) \to (\neg \operatorname{Authz}(u, o, v_1, g, \mathbf{w}) \mathcal{W}(\operatorname{Join}(u, g) \lor
         CreateO(o, v_1, q) \lor update(s, o, v_2, v_1, q))))
```

ICS

The π-system Specification

 $\pi = \chi_0 \land \chi_1 \land \chi_2 \land \chi_3 \land \chi_4 \land \chi_5 \land \chi_6$

- Formal stateless behavioral model with
 Provable security properties
- Formal stateful enforceable model with
 - Proof of correspondence between stateless and stateful models

g-SIS and LBAC

Agile Collaboration

1.

2.

3.

Agile collaboration in LBAC enabled by g-SIS

© Ravi Sandhu

Agile Collaboration

© Ravi Sandhu

RBAC0 and g-SIS

- 1. Read Subordination
- 2. Write Subordination
- 3. Subject Create Subordination
- Subject Move
 Subordination

RBAC₀ with RW permissions in g-SIS

- > 3 succesful access control models in 40+ years
 > Discretionary Access Control (DAC)
 > Mandatory Access Control (MAC)
 also called Lattice-Based Access Control (LBAC)
 > Role-base Access Control (RBAC)
- > Numerous others defined and studied, implemented but no success
- Will Group Centric Models be the 4th element?
 Strong mathematical foundations
 - Strong intuitive foundations
 - Significant real-world deployment