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Information processing

manual processing (102)
mechanical processing (104)

mainframe (105)

PCs and LANs (107)

Internet and mobile (109)

the Internet of things, 
ubiquitous computing, 
pervasive computing, 
ambient intelligence (1012)
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Moore’s Law: computation/storage 2000-2020

Microprocessor performance: Gflops/s
Ethernet: speed in Gbps
Storage: Gigabyte/s
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Exponential growth
Ray Kurzweil, KurzweilAI.net

• Human brain: 1014 …1015 ops and 1013 bits memory
• 2025: 1 computer can perform 1016 ops (253)
• 2013: 1013 RAM bits (1 Terabyte) cost 1000$
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Information processing

Continuum between software 
and hardware
ASIC (microcode) – FPGA –

fully programmable 
processor

Everything is always 
connected everywhere 
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Disclaimer: 
cryptography ≠ security

• crypto is only a tiny piece of the security puzzle
– but an important one
– that often creates trouble

• most systems break elsewhere
– incorrect requirements or specifications
– implementation errors
– application level
– social engineering

• for intelligence, traffic analysis (SIGINT) is often 
much more important than cryptanalysis
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[Adi Shamir] We are winning yesterday’s informa-
tion security battles, but we are losing the war. 
Security gets worse by a factor of 2 every year.

[Andrew Odlyzko] Humans can live with insecure 
systems. We couldn’t live with secure ones.

[Gene Spafford] (using encryption on the Internet is 
like) using an armoured truck to transport rolls of 
pennies between someone on a park bench and 
someone doing business from a cardboard box 
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Research ↔ Practice

HARDWARE
Limited (govt+financial sector)
DES, 3DES

DES, RSA, DH, CBC-MAC
Provable security (PKC), 
ZK, ElGamal, ECC, stream 
ciphers 
Quantum crypto
MD4, MD5                
Provable security (SKC)
Key escrow
Quantum cryptanalysis
How to use RSA? 
Alternatives to RSA
PKI
AES 
ID-Based Crypto

70

80

90SOFTWARE
GSM, PGP
C libraries (RSA, DH)
SSL/TLS, IPsec, SSH, S/MIME
Java crypto libraries
WLAN

EVERYWHERE
Trusted computing, DRM, 

3GPP, RFID, sensor nodes 
…
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Context (2)
wireless 
data1900 1960 1980

Vernam: 
OTP

rotor 
machines

LFSR

1990 2000

1900 1960 1980
analog scramblers

wired 
voice

STU

1990 2000
VoIP

digital 
encryption
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wired 
data

block 
ciphers
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X25 TLS  SSH 
IPsec

WLAN 
PAN 

3GSM
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Context (3)

1997 2002 2004
WLAN

WEP WPA WPA2 
802.11iWEP 

broken
WPA 
weak

1980 1990 2000

AMPS
attacks on A5, 
COMP128

analog cloning, 
scanners

GSM/TDMA
TDMA 
cloning

3GSM

mobile 
phones

1999 2004
PAN

Bluetooth Bluetooth 
problems

LTE

Zigbee
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Challenges for crypto
• security for 50-100 years
• authenticated encryption of Terabit/s networks
• ultra-low power/footprint

secure software and 
hardware 
implementations

algorithm agility

performance

cost security
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Performance of hash functions - Bernstein
(cycles/byte) Intel Pentium D 2992 MHz (f64)
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What to remember from the 
algorithms and protocols 

• Always authenticated encryption (and 
not GCM)

• Dump hash functions except for 
applications where you really need them 
(digital signatures)

• Public key algorithms and protocols still 
a bottleneck for performance and 
security
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Outline

• Cryptographic algorithms
– Block ciphers
– Hash functions
– Stream ciphers
– MAC algorithms
– Public key algorithms and protocols

• Research challenges
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Block cipher

• larger data units: 64…128 bits
• memoryless
• repeat simple operation (round) many times

block 
cipher

P1

C1

block 
cipher

P2

C2

block 
cipher

P3

C3
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Block ciphers

DES (56)
3-DES (112-168)
IDEA (128)
GOST (128)
MISTY1 (128)
KASUMI (128 in 3G, 64 in 2G)
HIGHT (128)
PRESENT (80-128)
TEA (128)
mCRYPTON (128)
KATAN (80)

insecure secure?
0 50 80 128

Symmetric key lengths

AES (128-192-256)
CAMELLIA
RC6
CLEFIA

64-bit block 128-bit block

56 bits:   4 seconds with $5M
80 bits:   2 year with $5M 
128 bits: 256 billion years with $5B
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3-DES: NIST Spec. Pub. 800-67
(May 2004)

• single DES abandoned (56 bit)
• double DES not good enough (72 bit)
• 2-key triple DES: until 2009 (80 bit)
• 3-key triple DES: until 2030 (100 bit)

DES Clear  
text

DES-1 DES 

1 2 3

%^C&
@&^(

extremely vulnerable to 
a related key attack
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AES (2001)
• FIPS 197 published on December 2001after 4-year open 

competition
– other standards: ISO, IETF, IEEE 802.11,…

• fast adoption in the market
– except for financial sector
– NIST validation list: 1457 implementations

• http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

• 2003: AES-128 also for classified information and AES-
192/-256 for secret and top secret information!

• security: 
– algebraic attacks of [Courtois+02] not effective
– side channel attacks: cache attacks on unprotected implementations

[Shamir ’07] AES may well be the last block cipher



Cryptographic Algorithms for Network Security -
Failures, Success and Challenges 
Bart Preneel

MMM-ACNS 2010

4

19

AES implementations: 
efficient/compact

• software 
– 7.6 cycles/byte on Core 2 or 110 Mbyte/s bitsliced

[Käsper-Schwabe’09]

• co-processor in Intel Westmere
– new AES instruction: 0.75 cycles/byte [’09-’10]

• hardware
– fast 43 Gbit/s in 130 nm CMOS [‘05]
– most compact: 3600 gates

• PRESENT: 1029, KATAN: 1054; GOST: 650; CLEFIA: 4950
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AES variants (2001)
• AES-128
• 10 rounds 
• sensitive

lightweight key schedule, in particular for the 256-bit version

K
ey

 S
ch

ed
ul

e

round

.....
round

plaintext

K
ey

 (1
28

)

K
ey

 S
ch

ed
ul

e .....

round

plaintext

K
ey

 (1
92

)

K
ey

 S
ch

ed
ul

e

round

.....

round

round

round

plaintext

K
ey

 (2
56

)

round

round
.....

• AES-192
• 12 rounds 
• classified

• AES-256
• 14 rounds 

• secret/top secret
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What is a related key attack?
• attacker chooses plaintexts and key difference C
• attacker gets ciphertexts
• task: find the key
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AES-256
[Biryukov-Khovratovich’09]

[Biryukov-Dunkelman-Keller-Khovratovich-Shamir’09]

Slide credit: Orr Dunkelman

Related key 
attack: 4 keys,  
data & time 
complexity 
2119 << 2256

KASUMI A5/3  
4 related keys, 
226 plaintexts,  
230 bytes mem. 
232 time
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Should I worry about a related key attack?
• very hard in practice (except for control vector and some 

old US banking schemes)
• if you are vulnerable to a related key attack, you are 

making very bad implementation mistakes
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• this is a very powerful attack 
model: if an opponent can 
zeroize (= AND 0) 224 key bits 
of his choice (rather than ⊕ C)
he can find the key in a few 
seconds for any cipher with a 
256-bit key

• if you are worried, hashing 
the key is an easy fix
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Block ciphers: conclusions

• several mature block ciphers available
• security well understood

– in particular against statistical attacks (differential, 
linear) and structural attacks

– algebraic attacks may be further developed
• modes 

– no justification for encryption without 
authentication – should be abandoned

– efficient modes for authenticated encryption
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Hash functions

• collision resistance
• preimage resistance
• 2nd preimage 

resistance

This is an input to a crypto-
graphic hash function.  The input 
is a very long string, that is 
reduced by the hash function to a 
string of fixed length.  There are 
additional security conditions: it 
should be very hard to find an 
input hashing to a given value (a 
preimage) or to find two colliding 
inputs (a collision). 

1A3FD4128A198FB3CA345932

• MDC (manipulation
detection code)

• Protect short hash value
rather than long text

h
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The complexity of collision attacks
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MD5
• Advice (RIPE since ‘92, RSA 

since ‘96): stop using MD5
• Largely ignored by industry 

(click on a cert...)

• Collisions for MD5
– brute force (264): 1M$ 6 hours 

in 2010
– [Wang+’04] collision in 15 

minutes on a PC
– [Stevens+’09] collisions in 

milliseconds
• 2nd preimage: 

– [Sasaki-Aoki’09] 2123
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SHA-1
• SHA designed by NIST (NSA) in ‘93 
• redesign after 2 years (’95) to SHA-1

Prediction: collision for SHA-1 in the next 12-18 months

0
10
20
30
40
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70
80
90

2003 2004 2005 2006 2007 2008 2009 2010

SHA-1

[Wang+’04]

[Wang+’05] [Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks 
unpublished/withdrawn
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Hash function attacks: 
cryptographic meltdown yet with limited impact

• collisions problematic for future
– digital signatures for non-repudiation (cf. traffic tickets in Australia?)

• 2nd preimage: 
– MD2: 273  [Knudsen+09]
– MD4: 297/270 with precomputation [Rechberger+10]
– MD5: 2123 [Sasaki-Aoki’09]
– SHA-1: 48/80 steps in 2159.3 [Aoki-Sasaki’09]

• RIPEMD-160 seems more secure than SHA-1 ☺
• use more recent standards (slower and larger)

– SHA-2 (SHA-256, SHA-224,…SHA-512)
– SHA-3?
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Hash function attacks: impact
• High profile attack on CAs in December 2008
• TLS/SSL has been designed for algorithm 

negotiation and flexible upgrades
– …but the negotiation algorithm uses MD5 || SHA-1
– negotiation cannot be upgraded without changing the 

standard: TLS 1.1 -> 1.2
– brings serious cost: no upgrade until there is an 

economic attack
• HMAC: 

– HMAC-MD4: replace it
– HMAC-MD5 not recommended
– HMAC-SHA-1 ok
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Rogue CA attack 
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed 
root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special 
collision this results in a fake CA 
cert (need to predict serial 
number + validity period)

• 6 CAs have issued certificates signed with MD5 in 2008:
– Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC 

TrustCenter AG, RSA Data Security, Verisign.co.jp

• impact: rogue CA that 
can issue certs that 
are trusted by all 
browsers

32

Hash function status today

33

NIST AHS competition (SHA-3)
• SHA-3 must support 224, 256, 384, and 512-bit message 

digests, and must support a maximum message length of at 
least 264 bits
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80

Q4/08 Q3/09 Q4/10

round 1
round 2

final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 9/12/08

Round 2 (14): 24/7/09

Standard: 2012
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The Candidates

Slide credit: Christophe De Cannière
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Preliminary Cryptanalysis

Slide credit: Christophe De Cannière 36

Round 2 Candidates

Slide credit: Christophe De Cannière

a
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Hash functions: conclusions
• cryptographic meltdown but fortunately 

implications so far limited
• designers often too optimistic (usually 

need 2x more rounds)
• other weaknesses have been identified in 

general approach to construction hash 
functions

• SHA-2 and SHA-3 will co-exist
• SHA-4: probably not before 2030
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MAC Algorithms

• CBC-MAC: EMAC and CMAC
• HMAC
• GCM and GMAC
• UMAC
• Authenticated encryption

39

CBC-MAC based on AES (EMAC) 

AES

P1

C1

AES AES

P2 P3

C2
C3

AES

select leftmost 64 
bits

security level: 264

NIST prefers CMAC

40

HMAC based on MDx, SHA

f1

f2

xK2

K1

2126 CP33 of 6464MD5

2154.9 CP43 of 8080SHA-1
2109 CP8080SHA(-0)

251 CP & 2100 time (RK)6464MD5

288 CP & 295 time 4848MD4
Data complexityRounds in f2Rounds in f1

• Widely used in SSL/TLS/IPsec

• Attacks not yet dramatic

• NMAC weaker than HMAC
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GMAC: polynomial authentication code 
(NIST SP 800-38D 2007 + 3GSM)

• keys K1, K2 ∈ GF(2128)
• input x: x1, x2, . . . , xt, with xi ∈ GF(2128)

g(x) = K1+ Σi=1
t xi • (K2)i

• in practice: compute K1 = AESK(n)  (CTR mode)

• properties:
– fast in software and hardware (support from Intel/AMD)
– not very robust w.r.t. nonce reuse, truncation, MAC 

verifications, due to reuse of K2  (not in 3GSM!)
– versions over GF(p) (e.g. Poly1305-AES) seem more 

robust
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UMAC RFC 4418 (2006)

• key K, k1, k2 .., k256 ∈ GF(232)  (1024 bytes)
• input x: x1, x2, . . . , x256, with xi ∈ GF(232)

g(x) = prfK(h(x))

h(x) = ( Σi=1
512 (x2i-1 + k2i-1) mod 232  . (x2i + k2i) mod 232 )mod 264

• properties
– software performance: 1-2 cycles/byte
– forgery probability: 1/230 (provable lower bound)
– [Handschuh-Preneel08]  full key recovery with 240

verification queries (no nonce reuse needed!)
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Authenticated encryption
• Needed for network security, but only fully understood 

by crypto community around 2000 (too late)
• Standards have been selected recently:

– CCM: CTR + CBC-MAC [NIST SP 800-38C]
– GCM: CTR  + GMAC [NIST SP 800-38D]

• Both are suboptimal 

• IAPM
• XECB
• OCB

• GCM
• CCM
• EAX

patented

Issues:
• associated data
• parallelizable
• on-line
• provable security

44

MAC algorithms: conclusions

• can get better performance than encryption 
• EMAC (CBC-MAC) seems fine
• widely used choices lack robustness

• modes for authenticated encryption better 
understood but not widely deployed
– only 5-30% slower than encryption only
– GCM should be fixed

46

Outline

• Cryptographic algorithms
– Block ciphers
– Hash functions
– Stream ciphers
– MAC algorithms
– Public key algorithms and protocols

• Research challenges
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RSA problems
• 2 large primes p and q 
• modulus n = p.q
• compute λ(n) = lcm(p-1,q-1)
• choose e relatively prime w.r.t. λ(n)
• compute d = e-1 mod λ(n)

• public key = (e,n)
• private key = d of (p,q)
• encryption: c = xe mod n
• decryption: x = cd mod n

• Is factoring hard?
• Is the RSA problem, i.e, inverting f(x) = xe mod n 

as hard as factoring?
• Can we show that forging a signature implies 

factoring (and this without the Random Oracle 
assumption)?

48

Factorisation records
2009: 768 bits or 232 digits
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Factorisation
• New record in 2009: 768 bits (or 231 digits) using NFS
• New record in May 2007: 21039-1 (313 digits) using SNFS

• hardware factoring machine: TWIRL [TS’03]
(The Weizmann Institute Relation Locator)
– initial R&D cost of ~$20M
– 512-bit RSA keys can be factored with a device costing $5K in about 

10 minutes
– 1024-bit RSA keys can be factored with a device costing $10M in 

about 6 weeks

• ECRYPT statement on key lengths and parameters 
http://www.ecrypt.eu.org

896-bit factorization in 2012, 1024-bit factorization in 2020?
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Elliptic curve cryptography
50

Elliptic curve : E:  y2=x3-13x-3

P
Q

R=P+Q

Point multiplication: 
r P = P + P + … + P

r

Edwards curve : E: x2 + y2 = 1 - 30x2y2

[ Plotted by P. Schwabe ]
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Key lengths for confidentiality 
http://www.ecrypt.eu.org

282409614130-50 years

206204810310-20 years

1461024735 years

10051250days/hours

ECCRSAsymmetricduration

Assumptions: no quantum computers; 
no breakthroughs; limited budget
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New computational models:            
quantum computers?

• exponential parallelism

• Shor 1994: perfect for 
factoring

• But: can a quantum 
computer be built?

n coupled quantum bits

2n degrees of freedom !

53

If a large quantum computer 
can be built...

• all schemes based on factoring (such as RSA) will be 
insecure

• same for discrete log (ECC)
• symmetric key sizes: x2
• hash sizes: unchanged for collisions, x2 for preimages

• alternatives: Post Quantum Crypto: McEliece, HFE, 
NTRU,…

• So far it seems very hard to match performance of 
current systems while keeping the security level against 
conventional attacks

54

Picture of the lab11.7 T Oxford magnet, 
room temperature bore

4-channel Varian 
spectrometer

grad students in 
sunny California...

15=5x3

2001 55

2 approaches to key establishment

k=(αy)x

αx

αy
k=(αx)y

SigA(αx,αy)

√ SigB SigB(αy,αx) √ SigA

choose x choose y

Signed Diffie-Hellman (STS)

RSA with long term keys

RSAPKB( k || tA)choose k decrypt with 
SKB to get k
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Diffie-Hellman/STS offers one 
major advantage

• forward secrecy: compromise of long 
term private keys does not expose past 
session keys

• but more expensive
– 3 moves rather than 1
– more public operations
– incompatible with optimizations such as 

session caching, session tickets, false start

57

How to solve this
• [Käsper10] optimize OpenSSL
• ECC (NIST P-224 curve) + RSA-1024

0
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800

1000

RSA-1024 224-ECC 224 ECC
(opt)

Intel Core 2 - Handshakes/second
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Public key: conclusions

• essential for large open networks
• not suitable for bulk data
• widely deployed systems depend on a 

small set of mathematical problems
• long term security is an issue

59

Public key protocols: conclusions

• hard to figure out what is recommended in IETF
• more modularity and less complexity would be 

desirable, but large body of legacy standards 
and code

• public key operations are still a bottleneck at the 
server side

• advanced protocols can bring added value from 
the simple (password-based AKE) to more 
complex multi-party interactions

60

Outline

• Cryptographic algorithms
– Block ciphers
– Hash functions
– Stream ciphers
– MAC algorithms
– Public key algorithms and protocols

• Research challenges

61

Challenges for crypto
• security for 50-100 years
• authenticated encryption of Terabit/s networks
• ultra-low power/footprint

secure software and 
hardware 
implementations

algorithm agility

performance

cost security
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Challenges for long term security

• cryptanalysis improves: 
– mathematical attacks A5/1, E0, MD5, SHA-1
– implementation attacks

• computational power increases: 
– Moore’s law
– exponential progress with quantum computers?

• environment changes – new assumptions
– packet switched networking
– open networks
– dynamic networks
– untrusted nodes
– ratio power CPU/memory size
– outsourcing of data processing

63

Implementation attacks
• measure: time, power, electromagnetic 

radiation, sound
• introduce faults
• bug attacks in hardware
• combine with statistical analysis and 

cryptanalysis
• software: reaction attacks and API attacks

• major impact on implementation cost

Sun Tzu, The Art of War: 
In war, avoid what is strong and attack what is weak

64

Quantum cryptography
• http://www.secoqc.net/
• Security based 

– on the assumption that the laws of quantum physics 
are correct 

– rather than on the assumption that certain 
mathematical problems are hard

65

Quantum cryptography

• no solution for entity authentication problem 
(bootstrapping needed with secret keys)

• no solution (yet) for multicast
• dependent on physical properties of 

communication channel
• cost
• implementation weaknesses (side channels)

66

Layers

applications

protocols

primitives

algorithms

Proofs: link security at different levels in a quantitative way
L.R. Knudsen:                                                   
"If it is provably secure, it is probably not"

assumptions

67

Assumptions

James L. Massey: 
A hard problem is one that nobody works on

good lower bounds
average versus worst case
find new hard problems

research on hard problems?
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Implementations in embedded systems

Cipher Design,
Biometrics

D
Q

Vcc

CPU
Crypto

MEM

JCA
Java

JVM

CLK

Identification

Confidentiality
Integrity

SIM

D
Q

Vcc

CPU
MEM

JCA
Java

KVM

CLK

Protocol: Wireless authentication protocol 
design

Algorithm: Embedded fingerprint matching
algorithms, crypto algorithms

Architecture: Co-design, HW/SW, SOC

Circuit: Circuit techniques to combat side
channel analysis attacks

Micro-Architecture: co-processor design

Identification

Confidentiality
Integrity

Identification
Integrity

SIMSIMSIM

Slide credit: Prof. Ingrid Verbauwhede

Technology aware solutions?
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The power challenge: 
AES-128 speed/power for various platforms (Joule/Gb)

CMOS FPGA PIII C - Emb.
Sparc

Java-
Emb.
Spar

speed power power/speed

1 Gbit/s

1 Mbit/s

1 Kbit/s

mWatt

Watt

106

103

1

Slide credit: Prof. Ingrid Verbauwhede
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demand in 
applications

maturity

low

low

high

high

block 
ciphershash 

functions
stream 
ciphers

public key 
operations

sophisticated 
protocols

simple 
protocols

MAC
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Life cycle of a cryptographic algorithm

idea

mathematical analysis

publication

public evaluation

hw/sw implementation

standardization

industrial products $$$

OKRIP

take out of service
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Conclusions
• the “crypto problem” is not solved

– many challenging problems ahead…
– make sure that you can upgrade your crypto 

algorithm and protocol
– bring advanced cryptographic protocols to 

implementations

when will everyone pay with e-cash?

can we reconcile privacy, cloud computing, DRM 
and data mining?


