

Software Security

 Very few security breaches are due to weak
crypto or broken protocols.

 Most are due to:

 implementation errors (programmers)

 configuration errors (administrators)

 wrong decisions (users)

 Software security focuses on tools to help
programmers avoid these errors.

Yesterday’s Attacks:
 Code injection via stack smashing.

 Code injection via heap spraying.

 Code synthesis via buffer overrun and “return-oriented
programming”.

 Changing/revealing sensitive variables via format string
attacks.

 Changing/revealing sensitive database entries via SQL
injection attacks.

 Denial of service attacks via null-pointer dereference.

Today’s Mitigations
 Manual code inspection (e.g., grep for strcpy)

 Testing

 No-execute for the stack
 requires new chips, doesn’t stop heap spraying or return-oriented programming.

 Stack guard, /gs switch
 stops only some stack smashing, does not stop heap spraying.

 Heap guard, allocation randomization
 alas, MS lookaside lists made this irrelevant, Adobe used own heap manager.

 Static analysis: Prefast, Coverity, Fortify
 unsound else too many false positives

 Address space randomization
 low entropy in Windows, just slows the spread

The Trend
 Most of the early attacks were based on lack of enforcement of

language-level abstractions.
 No one expects “a[34] := x” to change the behavior of a procedure return.

 Frustrating because type safety is all about enforcing abstractions.

 The mitigations aren’t perfect.
 But they have increased the difficulty of constructing an exploit that takes

advantage of language-level errors.

 Evidence: cost of a zero-day in Win7 is orders of magnitude higher than
for WinXP.

 Unfortunately, they’ve simply shifted the attacks:
 to code that Microsoft doesn’t own (drivers, Flash plug-in), or

 a higher-level of abstraction (e.g., SQL, Javascript, APIs).

 (Next: denial of service…)

Research
 Goal should be to get ahead of these trends.

 Type-safe languages (e.g., Java)
 enforce language-level abstractions.

 means we can reason at the source level instead of at the machine level.

 key challenge: bugs in the implementation

 for instance, JDK includes 700K lines of C code.

 can we eliminate the compiler from the trusted computing base?

 Next-generation types
 encode application-level security policies

 key challenge: tradeoff between expressiveness of types, and
automation.

 key challenge: scaling these expressive type systems to full languages.

Complimentary Efforts

 Powerful static type checking for systems
code

 ruling out application-level errors

 Compiler & type-checker verification

 ruling out errors in the implementation

What we wish we could do

with types:
A range from shallow to deep properties:

sub : (x:array T, i:int) T
requires i >= 0 && i < size(x)

printf : (x:string) -> (vs:list obj) -> unit
requires (ts,parses(x,ts) &&

have_types(vs,ts))

typechecks : (x:source) -> (y:bool)

ensures if y then typesafe(x)

else True

compile : (x:source) (y:x86)
ensures (bisimilar(x,y))

Emerging languages:

 ESC/Java, JML, Spec#, Sage, M, Cyclone, etc.

 Extend types with specifications & refinements
 void foo(Bar x) requires x != null

 Pre-, post-conditions, assertions, object invariants, etc.

 But limited to first-order logic over a few sorts.

 Generate verification conditions (VCs) as part of type-
checking.

 Use abstract interpretation for loop invariants.

 Feed verification conditions to an SMT prover.

Unfortunately:
 Two very different languages.
 An impoverished “pure math” language for models & specs.
 An imperative language for code.
 Serious confusion trying to mix the two.
 e.g., what happens when a spec calls a function with effects?

 First-order logic hurts.
 No real ability to abstract over models & specs.
 No good frame properties.

 Provers & analyses come up short.
 Can discharge shallow properties: x != null.
 But not parses(x,ts), much less bisimilar(x,y).

I have some experience…
 Cyclone incorporated a form of refinement types.
 Cyclone was a type-safe dialect of C.

 Goal was to eliminate null-pointer checks, array-bounds checks.

 It was actually quite effective:

 even with a dumb theorem prover, got rid of 90% of the checks.

 But 10% is still a lot (4,000 checks left in the compiler).

 primary limitation was not the theorem prover

 it was partially due to the synthesis of loop invariants

 it was partially due to the lack of context/summaries (for scaling)

 and the inability to reason about memory (aliasing) in a modular
fashion.

 And I wanted to prove application-level properties about my code,
not just language-level.

Some semantic issues…
 There were also some tricky semantic issues with

refinement types in impure programming languages.
 { x : ref int | x := 42; true }
 {(x,y): int*int | x/y > 10}
 { x : int | exit(0) }

 Usual approach:
 analyze the syntax of the predicate to rule out side effects,

including exceptions, divergence, IO, nested failing
contracts, etc.

 and furthermore, you can’t use separately compiled functions
in your predicates.

 need to reflect effects into types to get a modular treatment.

Type Theory
Give programmers the ability to work around short-

comings of automation.

In particular, give them a way to build explicit proofs
within the language.
 if automation can’t find proof, at least the programmer can

try to construct one.

Not a new idea: dependent type theory!
 in particular: Coq, Agda, ACL2, Isabelle/HOL, PRL,…
 but many challenges in making this practical

Programming in Coq:
sub(v:vector Ti:nat)(pf:i<size(v)): T;

cmp(i:nat)(j:nat): LT{i<j} + GTE{i>=j}

checked_sub(v:vector T)(i:nat):option T

:= match cmp i (size v) with

| LT pf => SOME(sub v i pf)

| _ => NONE

end

Another Example
Inductive list(T:Type) : Type :=

| nil : list T
| cons : T -> list T -> list T.

Infix “::” := cons.

Fixpoint append(x y:list nat) : list nat :=
match x with
| nil => y
| h::t => h::(append t y)
end.

Lemma append_assoc :
x y z, append (append x y) z = append x (append y z).

Building Proofs Explicitly
eq_refl : (T : Type) (x : T), x = x

eq_ind_r : (T : Type) (x : T) (P : T -> Prop),
P x -> y : T, y = x -> P y

Fixpoint append_assoc(x:list nat) :
y z, append (append x y) z = append x (append y z) :=
match x with
| nil => fun y z => eq_refl (append (append nil y) z
| h::t => fun y z =>

eq_ind_r (fun l : list nat =>
h :: l = h :: append t (append y z))

(eq_refl (h :: append t (append y y z)))
(append_assoc t y z)

end.

Building Proofs in Practice
Lemma append_assoc :

x y z, append (append x y) z = append x (append y z).

Proof.

induction x.

auto.

intros y z H. simpl. rewrite H. auto.

Qed.

How Does All This Scale?

X.Leroy [PoPL ‘06]: correct, optimizing compiler
from C to PowerPC:
 Build interpreters for C and PowerPC code.

 compile: (s:source) (t:target, bisimilar(s,t))

 compiler comparable to good ugrad class

 Coq extracts Ocaml code by erasing proofs

Bottom line: it’s feasible to build mechanically verified
software using this kind of approach.

Great Progress, but…
 4,000 line compiler:
 7,000 lines of

lemmas and theorems
 includes interpreters/models

 much is re-usable in other contexts

 17,000 lines of
proof scripts!
 though with right tactics, could at least cut in half.

 and keep in mind, this is a very deep property.

 Key research question:
 how to keep the tail from wagging the dog?

Recent Work [PoPL’10]

 Developed a core-ML compiler
 higher-order functions, datatypes, refs, etc.

 CPS & closure conversion

 Common sub-expr., dead-code, register
allocation, etc.

 Compiler about 5,000 loc.

 Proofs only 2,000 loc!
 Stronger result too: compiler will terminate

and produce bisimilar result.

Adam’s Secret Weapon
The typical Coq proof is coded as a series of

small steps that drive a goal down to known
facts.
 This makes the proof very brittle: small changes

in the code or specifications result in non-local
changes in corresponding proofs.

 Adam codes a search tactic that automatically
simplifies goals.

 As a result, changes to the code or specifications
really only demand augmentations to the shared
tactic.

Example
Inductive stmt : Set :=

| ...

| Seq : stmt -> stmt -> stmt

| ...

Inductive evals :
stmt -> state -> state -> Prop :=

| ...

| evSeq : forall c1 c2 s1 s2 s3,

evals c1 s1 s2 -> evals c2 s2 s3 ->

evals (Seq c1 c2) s1 s3

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

Adam style
Ltac mytac := repeat match goal with

| [|- forall _, _] => intro
| [H : evals (Seq _ _) _ _ |- _] =>

inversion H ; subst ; clear H
| [|- evals (Seq _ _) _ _] => econstructor
| _ => eauto

end.

Lemma seq_assoc : forall c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.

mytac.

Qed.

More Recently

 Paul & Jean have developed a translation
validator for the LLVM compiler.
 tries to automatically prove the output of an

optimization is equivalent to the input.

 in essence, decompiles the code into a
denotational semantics.

 MySQL implementation: validates 95% of the
functions with 11 optimizations turned on.

 Suggests that we can significantly lower the
proof burden for realistic compilers.

So…
 At least for compilers, it’s not only possible, but I

would claim practical to build fully verifying
compilers.
 Just as importantly: maintain them!

 Reality: you still need very smart people to do the
specifications and proofs.
 But they can build compilers for domain-specific

languages that capture important safety or security
properties.

 Bottom line: we can eliminate compilers from the
trusted computing base.
 language-enforced security properties.

Another big problem:
Systems like Coq (and ACL2, Isabelle/HOL, etc.) are

limited to pure, total functions:
 no hash tables, union-find, splay trees, …

 no I/O, no exceptions, no diverging computations, no
concurrency, …

As a result, both Xavier’s and Adam’s compilers are
relatively slow.

And, although we can model systems (e.g., kernels),
we can’t program them directly in Coq.

Why must we have pure functions?

Why only total functions?

At all costs, there should be no (closed) term
of type False.

 i.e., there should be no proof of False.

 fun bot()=bot() : .unit

 If we can code bot in Coq:
bot(): False

 Note that other things, including state,
exceptions, concurrency, continuations, can
lead to the same sort of problems.

A pattern: monads
As in Haskell, distinguish purity with types:

 e : int

 e is equivalent to an integer value

 e :Cmd int
 e is a computation or command which when run in a world w

either diverges, or yields an int and some new world w’.

 Because computations are delayed, they are pure.

 So we can safely manipulate them within types and proofs.

 e :Cmd False
 possible, but means e must diverge when run!

Hoare Type Theory:
By refining Cmd with predicates, we can capture

the effects of an imperative computation
within its type.

e : Cmd{P}x:int{Q}

When run in a world satisfying P, e either
 diverges, or else
 terminates with an integer x and world satisfying
Q.

i.e., Hoare-logic meets Type Theory

Hoare Type Theory (HTT)
 Dependently-typed, pure, core functional language
 really pure, no effects including divergence

 importantly, functions are always pure.

 so function calls can safely appear within predicates.

 Layer on top of this a language for building commands
 c : Cmd {P}x:T{Q}

 a delayed computation which when run in a world satisfying P

 either diverges or returns a value x of type T

 and puts us in a world satisfying Q

 Commands are delayed
 So building a command doesn’t have any effects

 (The command is only run outside the language.)

 So even commands can safely appear in types and predicates.

Implementing HTT
 We embedded HTT into Coq
 (could do this in other settings like Agda)

 Coq provides us the pure, dependently-typed core language

 It also provides a powerful logic (CiC)

 And an interactive theorem-proving environment

 Coq gets the dependency, proofs, etc. right.
 much more powerful than GADTs or related ideas.

 actually simplifies things considerably.

 So in a sense, all we’re doing is suggesting how to add effects to Coq.
 Not a new idea (c.f., NuPRL’s bar types, W.Swiestra’s Agda work)

 One key difference is that our worlds are “bigger” than what you can
encode within Coq.

 In particular, our stores allow you to store computations.

Reasoning about pointers…
 A long standing issue with Hoare logic is finding a modular treatment

of pointers to heap-allocated data.

 The key issue is this:
 Suppose we start in a state s such that:

 sorted(x:linked-list) ∧ non-empty(y:queue)

 Now suppose we have a dequeue operation for y:

 e.g., dequeue : Cmd {non-empty(y)}z:T{true}

 We can use the rule of consequence to forget about x and then invoke the
dequeue command, but then we lose information about x.

 The insight is that x and y are referring to distinct regions in memory.
 But to take advantage of this, we need to show that each location in x is

disjoint from each location in y.

 And how do you do this without leaking implementation details?

Separation Logic
In HTT we used a form of separation logic (Reynolds & O’Hearn) for our

specifications.

 predicates that incorporate a notion of capability or ownership.
 emp is only satisfied by the empty heap

 x e is only satisfied by the heap that contains one location x, pointing to a value e.

 connectives capture disjoint ownership.
 P * Q describes a store s that can be broken into disjoint fragments s1 and s2 such that

P(s1) and Q(s2).

 (P1 * P2 * … * Pn) captures that disjoint(Pi,Pj) for all i,j.

 commands can only access locations they are given in their spec
 This ensures a frame condition on e.g., procedures

 If c : Cmd{P}{Q} and s |= (P*R) then after calling c in state s, I get a state that satisfies
(Q*R).

A simple, imperative ADT
Parameter stack : Set -> Set.

Parameter rep (T : Set) : stack T -> list T -> hprop.

Parameter empty (T : Set) :

Cmd emp (fun s : stack T => rep s nil)

Parameter push T (s : stack T) (x : T)(ls : [list T]) :

Cmd (rep s ls) (fun _ : unit => rep s (x :: ls)).

Parameter pop T (s : stack T) (ls : [list T]) :

Cmd (rep s ls)

(fun xo : option T =>

match xo with

| None => [ls = nil] * rep s ls

| Some x => Exists ls’ :@ list T,

[ls = x :: ls’] * rep s ls’

end)

A linked-list implementation
Record node : Set := Node {

data : T;
next : option ptr

}.

Definition stack = ptr.

Fixpoint listRep (ls : list T) (hd : option ptr) : hprop :=
match ls with
| nil => [hd = None]
| h :: t => match hd with

| None => [False]
| Some hd => Exists p :@ option ptr,

hd --> Node h p * listRep t p

end
end.

Definition rep (s : stack) (ls : list T) : hprop :=

Exists p :@ option ptr, s → p * listRep ls p.

The push code
Definition push(s:stack)(x:T)(ls:[list T]) :

Cmd (ls ~~ rep s ls)
(fun _ : unit => ls ~~ rep s (x :: ls)).

refine (fun s x ls => hd <- !s;

nd <- New (Node x hd);

{{s ::= Some nd}}

); unfold rep ; sep fail auto.

Each line induces a verification-condition as a predicate which is then fed
to the sep tactic.

In this case, the tactic can easily discharge the verification conditions
(when we tell it to unfold the definition of the rep predicate.)

For more complicated code
 We provide a generic tactic that understands separation logic.
 e.g., x→v * y→z -> x ≠ y

 these build on a library of separation lemmas

 and other tactics included with Coq

 The tactic is parameterized so you can add domain-specific
reasoning.
 e.g., unrolling definitions like rep.

 In practice, works extremely well for building fully verified,
imperative ADTs.
 stacks, association lists, queues, trees, hash-tables, etc.

[Details in ICFP’09]

What about systems?

Is it feasible to build a complete system?

 not just state, but I/O & exceptions

 feasible to specify desired semantics?

 feasible to construct & maintain proofs?

Ysql [PoPL’10]
In-core database (c.f., MySQL) including:
 Definitions of schemas, relations, & queries

 define meaning of queries as denotational semantics

 define a simple cost model for queries

 Routines for I/O

 [de]serialize tables to disk; proof that deserialize(serialize x) = x

 query parser

 Query optimizer

 prove correctness w.r.t. semantics

 prove cost preservation where possible

 Execution engine

 uses B+-trees for in-core representation

 use Cmd monad for imperative operations

 prove (partial) correctness w.r.t. query semantics

What’s missing?

 No concurrency

 Integrating ideas from concurrent separation
logic to make this feasible.

 Performance

 The OCaml code that is extracted has many
inefficiencies.

 And we must trust the OCaml compiler!

Coq compilation
 Goal: verified compiler for Coq
 need model of Coq in Coq
 need verified extractor to core-ML
 let Adam’s compiler take over

 But there are more opportunities:
 For the pure fragment, we have the luxury of

choosing evaluation order.
 all the advantages of Haskell & ML!

 Opportunities for introducing parallel constructs.
 e.g., reductions may require proof that

combining operation is associative.

To wrap up
 I believe that in 10 years time, we will have the

tools needed to build fully verified code in a
cost-effective way.
 at least for safety and security critical code.

 Hard challenges remain
 concurrency is still amazingly difficult
 maintainable specifications & proofs

 Domain-specific languages hit a sweet spot.
 can afford to build verified checkers, compilers.
 amortize the cost of proofs across many programs.

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

1 subgoal

============================
 c1 c2 c3 s1 s2,

evals (Seq c1 (Seq c2 c3)) s1 s2 ->

evals (Seq (Seq c1 c2) c3) s1 s2.

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

1 subgoal

============================
 c1 c2 c3 s1 s2,

evals (Seq c1 (Seq c2 c3)) s1 s2 ->

evals (Seq (Seq c1 c2) c3) s1 s2.

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
============================
evals (Seq (Seq c1 c2) c3) s1 s2

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
============================
evals (Seq (Seq c1 c2) c3) s1 s2

Proving Seq Associative

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
============================
evals (Seq (Seq c1 c2) c3) s1 s2

Lemma seq_assoc :
 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

Proving Seq Associative

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
============================
evals (Seq (Seq c1 c2) c3) s1 s2

Lemma seq_assoc :
 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

Proving Seq Associative

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
s4 : state
H3 : evals c2 s3 s4
H7 : evals c3 s4 s2
============================
evals (Seq (Seq c1 c2) c3) s1 s2

Lemma seq_assoc :
 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

2 subgoals

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
s4 : state
H3 : evals c2 s3 s4
H7 : evals c3 s4 s2
============================
evals (Seq c1 c2) s1 ?969

subgoal 2 is:
evals c3 ?969 s2

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

3 subgoals

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
s4 : state
H3 : evals c2 s3 s4
H7 : evals c3 s4 s2
============================
evals c1 s1 ?970

subgoal 2 is:
evals c2 ?970 ?969
subgoal 3 is:
evals c3 ?969 s2

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

2 subgoals

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
s4 : state
H3 : evals c2 s3 s4
H7 : evals c3 s4 s2
============================
evals c2 s3 ?969

subgoal 2 is:
evals c3 ?969 s2

Proving Seq Associative
Lemma seq_assoc :

 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

1 subgoal

c1 : stmt
c2 : stmt
c3 : stmt
s1 : state
s2 : state
H : evals (Seq c1 (Seq c2 c3)) s1 s2
s3 : state
H2 : evals c1 s1 s3
H5 : evals (Seq c2 c3) s3 s2
s4 : state
H3 : evals c2 s3 s4
H7 : evals c3 s4 s2
============================
evals c3 s4 s2

Proving Seq Associative

Proof completed.

Lemma seq_assoc :
 c1 c2 c3 s1 s2,
evals (Seq c1 (Seq c2 c3)) s1 s2 ->
evals (Seq (Seq c1 c2) c3) s1 s2.

Proof.
intros.
inversion H ; subst.
inversion H5 ; subst.
econstructor.
econstructor.
eapply H2.
eapply H3.
eapply H7.

Qed.

Acknowledgements

A. Nanevski A. Chlipala M. Sozeau

A. Shinnar R. Wisnesky G.Malecha P. Govereau

JB. Tristan

