

Service dependencies in information systems

Hervé Debar Professor, Télécom SudParis Joint work with N.Kheir, N.Cuppens & F.Cuppens

Attackers consistently defeating security systems

• Need different tools ?

However

- Many compromises could be discovered with existing logs
 - Today's attacks target sensitive information
 - Sensitive (target) information known « a-priori »

Defense trends

Intrusion detection/prevention insufficient

- Partial perimeter security
- Alerts largely unusable (feeling)
- Security Information Management as compliance
- Other research activities taking of, looking at the attacker
 - Cyber Situation Awareness (Cyber SA, ~2000)
 - Cyberwar (~2005)
 - Attack attribution (~2008)
 - Advanced persistent threat (APT, ~2010)

Objective: better detection

A different objective

Security largely statically defined

- Design time compromise
- Monitoring built-in (regulation, etc.)
- Vulnerabilities & attacks are dynamic
- What if we could adapt our (limited) resources to the threat
 - Outside the « security » perimeter
 - Need to process (use) alerts in real-time
- Move from (cost|security|QoS|useability|...) compromise at design time to compromise at run time

What is already there ?

Dynamic control of networks and services is an established trend:

- web service negotiation
- Cognitive radio
- Autonomic computing
- Dynamic firewall rules in VoIP environments

Policy-based management

• IETF COPS, OPSEC, ...

Adaptive cyber-defense systems ?

Background: The OODA Loop (Observe-Orient-Decide-Act)

TELECOM SudParis

Requirements for dynamic security policy management

Key issue : Assurance that the system behavior is correct

Modern security policy expression

Role-based access control (RBAC)

Operational model including enforcement and data acquisition

The OrBAC model

Components

- Roles (subjects)
- Activities (actions)
- Views (objects)

Security rules

- Prohibitions
- Permissions
- Obligations
- (priorities)

Contexts

- Temporal
- Threat

Rule management

Conflict resolution

Key functions

Threat contexts

- Labelled through CVE (relationship w. alerts)
- Extensions required (generic attacks)
- Management of rule priorities (conflict resolution)

« guaranteed operational states »

- Normal context
- Minimal context
- Convergence (Datalog)

Issues with OSC

Selection of enforcement points

- Capabilities
- Limit number of components (reuse)

Effect of response

- Negative ?
- Proposed solution: dependencies modeling

How do we model and leverage dependencies

TELECOM SudParis

The SAE Architecture Analysis and Design Language (AADL) standard

Advantages

- Separation between interfaces and internal behavior
- Scalability by aggregation
- Operational modes
- Separation between topology and workflow
- Fault model

Additional assets

- XML representation
- Standard graphical tools
- Static and dynamic models

Dependencies are sometimes layered

Information	• Structure
Services	 Applications
Middleware	Operating systemModules / Functions
Transport	Connectivity (routing)Access (configuration)

Dependencies are sometimes sequential

Dependencies properties

Topology

- User-side dependency
- Service-side dependency
- Proxy dependency
- Workflow
 - Start
 - Idle
 - Request
 - Stop
- Temporality
- Failure impact

Use case: car reservation platform

Content

- 3 web services
- 3 user classes

Vehicle reservation

- Registered users only
- Check available vehicles
- Requires reservation
- Cancel reservation

Email

- Webmail
- POP
- IMAP

Hidden services

- LDAP
- NFS
- MySQL
- SMTP

Page 17

Use case schematic dependencies description

The « Quality of Experience » Index

- Qualitative evaluation of attack impact
- Attack evaluated with CVSS vector score
- Impact transfer matrixes attached to each dependency
 - Both upwards and downwards
 - Functions (0, Id, Hx)
 - Sensitive choice
- QoE index computed from user perspective sensitivity on confidentiality, availability and integrity

Upwards propagation examples

TELECOM SudParis

Attack propagations

Page 21

Enforcement points (PEP) and responses

- Components have at least minimal PEP functions
 - Shutdown

Security components have additional power

- Firewall: filtering, quarantine
- LDAP: user-level access control
- Finding PEPs : downwards dependency propagation

Response strategies

Scenario 2: Privacy violation attempt

Scenario 1: mailbox compromise attempt

Scenario 2: Privacy violation attempt

Step 1

- HTTP server compromised
- Response 1 impacts extranet users
- Response 2 impacts all users
 - Access still possible through POP and IMAP
- Response 0 allows normal behavior

Step 2

- Attack impact realized
- Response 1 activated

Step 3

 Additional candidates responses ineffective

Known issues (so far)

Scale

- Definition of transfer matrixes
- Modularity of modeling tools
- Perspective: Patterns ?

Model management and maintenance

- New vulnerabilities, services
- New attack classes

Model use

- Uncertainty of environment
 - Presence/absence of machines
 - Unidentified assets (printers, level 2 switches, ...)
- Differentiation of assets

Aggregation of individual responses

Qualitative: conflict resolution mechanisms

Perspective: Quantitative

- Combinations
- Norms

Countermeasures over time

- Switchover between counter-measures
- Start from "non-virgin" state
- Oscillations
- Deactivation of counter-measures
- Distribution time versus efficiency time

Conclusions and future work

Adaptive security possible

Difficulties to overcome

- Definition of dependencies and reaction patterns
- Qualitative decision support (Simulation)
- Acceptance

