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1. Introduction 
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1.1 Past work 
• Fields of interest: HPC, Distributed Computing 
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1.1 Past work 

 
 

Fig. 1.1 Reconfiguriable distributed smart conveyors 

Distributed computing and distributed 
Cyber-Physical systems  
Smart Blocks ANR-2011-BS03-005 
Distributed autonomous modular  
system; reconfigurable conveyor. 
Li Zhu, Didier El Baz, A programmable actuator for 
combined motion and connection and its application to 
modular robot, Mechatronics, Vol. 58, April  2019, 9-19. 
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1.2 Present activities 

• PHC Tassili Bigreen 40160QB  
Algorithms for Big Graphs, Application to 

Green City LAAS-CNRS Toulouse &Univ. of 
Lyon 1, France 
Univ. H. Boumediène Algiers, Algeria 

• International Lab on Security of Cyber-physical 
Systems, ITMO University 
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1.3 Society, Graphs and Arts 
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1.3.1 Genealogy and Heraldry 

• Genealogy, heraldry  
    and trees. 
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Fig. 1.2 Genealogy of 
of Bourbon royal family 
International influence 
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1.3.2 Genealogy and History 
• Trees are the key to understanding the history of countries. 
• At the time of the Old Regime, history was mainly a consequence of royal 

alliance and royal successions. 
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      The War of  
      Spanish Succession  
      1701 to 1714. 
 

Bourbons of Spain  

Philip VI  (2014 -) 
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1.3.3 Genealogical tree in the 
Medieval & Renaissance Art 

• St Anne Trinitarian 
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Figure 1.3  
Leonardo da Vinci 
St Anne, the Virgin Mary 
and the Christ 
ca 1510-1519, 
oil on wood, Paris, Le 
Louvre  
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1.3.3 Genealogical Trees in the 
Medieval & Renaissance Arts 

• Jesse’s tree 
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Figure 1.4 stained glass 
window of the cathedral of 
Chartres 
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1.3.4 Graphs in  contemporary art 

• Hans Haacke 1936- 
• Shapolsky et al. Manhattan  

Real Estate Holdings,  
a Real-Time Social System, as of  
May 1st, 1971‘ 
Haacke took on the real-estate holdings  
of one of New York City's biggest slum  
landlords. The work exposed, through  
meticulous documentation the  
questionable transactions 
of Harry Shapolsky's real-estate business  
between 1951 and 1971. 
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1.3.4 Graphs in  contemporary art 
• Hans Haacke 1936- 
• Shapolsky et al.  
Manhattan  
Real Estate Holdings, 
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1.3.4 Graphs in  contemporary art 

• Mark Lombardi 1951 – 2000 Brooklyn, USA 
• Narrative Structures 
• American neo-conceptual artist who specialized in drawings that 

document alleged financial and political frauds by power brokers, and in 
general "the uses and abuses of power". 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 

Figure 1.5 Mark Lombardi 
Narrative structure 
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Mark Lombardi’s drawings 

• George W. Bush, Harken Energy, Jackson Stephens  
• ca 80 - 90 
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Figure 1.6 Alleged connections between James Bath,  the Bush and  bin Laden families, a 
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Mark Lombardi’s drawings 

• Influences: philosopher Herbert Marcuse and 
visualization expert Edward Tufte. 

• Lombardi’s Narrative Structures  are 
structurally similar to sociograms  

• Sociograms: a type of graph drawing used in 
the field of social network analysis. 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 10/9/2019 16 



1.4 Importance of Graphs 

• Graphs like trees have always played a major 
role in the past.  

• In particular, the history of mankind was 
strongly related to genealogical trees. 

• With the development of the Internet and 
social networks, Big Data and graph analysis 
is one are very important domains in Applied 
Maths. with many applications in sociology, 
security and business. 
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2. Social networks, Big Data and 
Graphs 

• 1030 bytes of data by day are generated and a 
big part of those data are social data. 

• We find huge graphs in social networks, e.g., 
Twitter fellowship: 1,470,000,000 edges. 

• Curse of dimension 
• Need automated treatment. 
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2.1 Graphs 

• Graph is a powerfull concept 
• Graphs can represent many things: 
family relationships,  
communication networks, computer 

networks,  
social networks,  
political relationships,  
financial influences. 
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2.2 Graph representation 

• A graph consists of a set of vertices 𝑁 
and a set of edges 𝐴,𝐶𝐶𝐶𝐶 𝑁 = 𝑛, 𝐶𝐶𝐶𝐶 𝐴 =
𝑎. 
 
 

Figure 2.1 Graph 
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2.2.1 Undirected graphs 

• An undirected graph is a graph in which edges 
have no orientation. 

Figure 2.2 undirected graph 
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2.2.2 Directed graphs 

• A directed graph or digraph is a graph in 
which edges have orientations. 

• A digraph is written as an ordered pair 𝑁,𝐴  
where 𝑁 is the set of vertices and 𝐴 is the set 
of edges. 
 

Figure 2.3 Directed graph 
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2.2.3 Path 

• A path in a graph is a finite or infinite 
sequence of edges which connects a sequence 
of vertices. 
 
 
 
 
 

• Path a,d,e 

e 

c f 

b 

d 

a 

Figure 2.4 Path 
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2.3 Other networks 

• We find also big graphs in domains like  
social simulation, e.g., road networks  
    US road network: 58,000,000 edges,  
brain science, e.g., EU Brain project  
    Neural nets: 100,000,000,000 edges, 89 billion 
nodes. 
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3. Analyzing data structure 

• Graphs can have different topologies / structures: 
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Figure 3.1 Graphs 

Chain Tree Unstructured Graph with central node 
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3. Analyzing graph structure 

• Hierarchized networks  
P2P networks with super peers 
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Figure 3.2 Graphs 

Hierarchized network 
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3. Analyzing graph structure 

• Mesh,    cycles 
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3.1 Graph structure and metrics 

• Degree of a node 
    Number of outgoing edges 

 
 
 
 

• e.g., 𝑑 𝑗 = 3 
 
Algorithms for opinion leaders recognition 
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j 

Figure 3.3 Degree of a node 
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3.1.1 Centrality 

• Centrality of a node  
• What is centrality? 
    Node that is not in the periphery of the 

graph 
 
This node is  
not central  
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Figure 3.4 Noncentral node 
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3.1 Tools to analyze graph structure 

• Centrality of a node  
• What is centrality? 
    Node that has many edges 
 
 
This node is  
central  
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Figure 3.5 Central node 
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3.1 Tools to analyze graph structure 

• Centrality algorithms, e.g., betweenness 
centrality algorithms 

    Algorithms based on all-pairs shortest path  
    calculation and counting number of shortest  
    paths through the node. 
• Closeness centrality algorithms based on all-

pairs shortest path calculation 
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3.1 Problem 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 

Figure 3.6 
Graph in the  
OrientDB database 
Data from 
Vkontakte 
Group of discussion 
on ski; 
edges are 
friendships  
Credit: M. 
Kolomeec 

Looking for 
leader 
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3.1 Problem 

• Looking for 
leader 

 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 

Figure 3.7 
Graph in the  
OrientDB database 
Data from Vkontakte; 
edges are friendships 
Credit: M. Kolomeec 
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3.1 Problem 

• Looking for best leaders or best E-fluentials 
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Figure 3.8 
Graph in the  
OrientDB 
database 
Data from 
Vkontakte; 
Pushkin Data a1; 
Credit: M. 
Kolomeec 

10/9/2019 34 

http://comsec.spb.ru/files/lidia/190709/vis3D.html


3.1 Problem 

• Looking for best leader 
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Figure 3.8b 
Graph in the  
OrientDB 
database 
Data from 
Vkontakte; 
Pushkin Data 
B5; 
Credit: M. 
Kolomeec 
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3.1 Problem 

• Looking for best leader 
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Figure 3.8b Graph in the 
OrientDB database 
Data from Vkontakte; 
Blue nodes: users who 
post comments 
Red nodes: followers; 
Credit: M. Kolomeec 
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3.2 Parallel hybrid centrality algorithm 

• Algorithm based on a combination of all-pairs 
shortest path calculations and degree of 
nodes. 

• Parallel algorithm designed for GPUs 
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3.2.1 Baseline 
• Single source shortest path problem 
• Source: node 0 
• Minimum hop problem. 
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Figure 3.9 shortest paths  
to node 1 
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3.2.1 Baseline 
• All-pairs shortest path algorithm  
• compute shortest paths for all possible 

destinations 
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Figure 3.10 all-pairs 
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3.2.2 Sequential case, step 1 
• Use a single source shortest path algorithm: Bellman-Ford 
• Minimum hop problem 
• At iteration 𝑘, all the shortest path distances with length 𝑘 are obtained. 

• 𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 ,  𝑖 = 2, …𝑛, 
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Figure 3.11 shortest paths  
to node 1 (source) 
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Bellman-Ford time complexity  
𝑶 𝒎𝒎  where  𝑚 is the  
largest  shortest path for single 
source shortest path 

10/9/2019 40 



3.2.2 Sequential case, step 1 

• Solve all-pairs shortest paths thanks to 
Bellman-Ford algorithm  

• We solve n single source shortest paths 
problems. 

• Time complexity: 
• 𝑶 𝒏𝒎𝒎  
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3.2.3 Sequential case, step 2 

• For each destination node 𝑖 ∈ 𝑁 (source), 
compute 𝑐ℎ 𝑖  hybrid centrality based on the 
sum of distances of shortest paths from each 
node 𝑗 ∈ 𝑁 to destination 𝑖𝜖𝜖. 

• 𝑐ℎ 𝑖 = ∑ 𝑥∗𝑗𝑗∈𝑁 𝑑 𝑖⁄  ∀𝑖 ∈ 𝑁. 

• Metrics that combines degree centrality and a 
kind of closeness centrality.  
Time complexity: 𝑂 𝑛2  additions. 
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3.2.4 Sequential case, step 3 

• The central node is the node 𝑖 ∈ 𝑁 such 
that 𝑐ℎ 𝑖  is minimal. 
 

• 𝑐ℎ 𝑖 = ∑ 𝑥∗𝑗𝑗∈𝑁 𝑑 𝑖 .⁄  

 
• Time complexity: 
    𝑂 𝑛  comparisons. 
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5/5=1 

9/1=9 

7/3 

8/2=4 
9/1=9 

8/2=4 

Figure 3.12 Graph with central 
node,  values of  𝑐ℎ 𝑖  
 

=2.33 
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3.2.4 Sequential case, complexity  

• Total time complexity: 
• 𝑶 𝒏𝒏𝒏  
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3.3 Single source shortest paths 

• The problem is to find a path with minimum 
length (shortest path) from each node i ∈ 𝑁 
to the destination 1.  
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𝑎𝑗1 
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𝑎𝑘𝑘 

Figure 3.13 shortest path problem 
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3.4 All-pairs shortest paths 

• We have to solve single source shortest path 
problem 𝑛 times i.e., for each possible 
destination1, 2, … ,𝑛. 
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3.4.1 Shortest path problem 
formulation 

• Directed graph 𝑁,𝐴 . 
• 𝑁 is the set of nodes. 
• Node 1: destination node (for network traffic). 
• n nodes numbered 1,…,n. 
• 𝐴 is the set of arcs.  
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3.4.1 Shortest path problem 
formulation 

• 𝐴 𝑖  set of all nodes j for which there is an 
outgoing arc 𝑖, 𝑗 ∈ 𝐴. 

    𝐴 𝑖 = 𝑗 ∈ 𝑁 | ∃ 𝑖, 𝑗  𝜖 𝐴  
• A cost 𝑎𝑖𝑖 is associated with each arc 𝑖, 𝑗 ∈ 𝐴. 
• The length of path 𝑖, 𝑗 𝑘, 𝑙  is 𝑎𝑖𝑖 + 𝑎𝑘𝑘 . 
• Minimum hop shortest paths 
• 𝑎𝑖𝑖 = 1, ∀ 𝑖, 𝑗  𝜖 𝐴. 
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3.4.1 Shortest path problem 
formulation 

• Assumptions 
Connectivity: there exists a path from every 
node 𝑖 = 2, … ,𝑛   to the destination node 1. 
 
Positive cycle: every cycle has positive length. 
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3.4.1 Shortest path problem 
formulation 

• Mathematical formulation 
• Fixed point problem 
• The shortest path vector 𝑥∗is the unique solution 

of the fixed point problem: 
        𝑥∗ = 𝐹 𝑥∗ , 
    where 
        𝑥1∗ = 0, 

  𝑥𝑖∗ = min 𝑥𝑖∗, min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 +   𝑥𝑖∗ ,  𝑖 = 2, …𝑛. 
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3.4.2 Bellman-Ford algorithm 

• The Bellman-Ford iterative algorithm (1958) 
converges to the solution of the problem from a 
super solution. 

   𝑥1(𝑘 + 1) = 0,  

    𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 ,  𝑖 = 2, …𝑛. 

• Well suited to distributed implementation 
    - simultaneous computations at each node. 
    - locality of data. 
• Well suited to parallelism. 
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3.4.2 Bellman-Ford algorithm 

• At iteration 𝒌, all the shortest path distances 
with length 𝒌 are obtained. 
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Figure 3.14 shortest path 
at iteration 0 
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3.4.2 Bellman-Ford algorithm 
• At iteration 𝑘, all the shortest path distances with length 𝑘 are obtained. 

•    𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 , 𝑖 = 2, …𝑛, 
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Figure 3.15 shortest path 
at iteration 1 
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3.4.2 Bellman-Ford algorithm 
• At iteration 𝑘, all the shortest path distances with length 𝑘 are obtained. 

•    𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 , 𝑖 = 2, …𝑛, 
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Figure 3.16 shortest path 
at iteration 2 
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3.4.2 Bellman-Ford algorithm 
• At iteration 𝑘, all the shortest path distances with length 𝑘 are obtained. 

•    𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 , 𝑖 = 2, …𝑛, 
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Figure 3.17 shortest path 
at iteration 3 
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3.4.3 Bellman-Ford complexity 

• Complexity of the Bellman-Ford algorithm  
    𝑶 𝒂   additions and comparisons at each 
iteration. 
    where 𝑎 = 𝐶𝐶𝐶𝐶 𝐴 . 
     
    Time complexity 
    𝑶 𝒎𝒂  with  𝒙𝒊(𝟎) = +∞, 𝒊 = 𝟐, … ,𝒏,  
     𝒎 𝐥argest shortest path. 
• Polynomial bounded time. 
 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 10/9/2019 56 



3.4.4 All-pairs shortest path 

• Use Bellman-Ford algorithm  for all pairs 
shortest path 

• Total time complexity: 𝑶 𝒏𝒏𝒏  
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3.4.5 Other algorithms 

• All-pairs shortest paths 
• Complexity of algorithms 
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Weights Time complexity Algorithm  

ℝ (no negative cycles) O(n3) Floyd–Warshall algorithm  

ℕ 𝑶(𝒏𝟑 𝟐𝝎 𝐥𝐥𝐥 𝝁 𝟏 𝟐⁄⁄ ) Williams 2014  

ℝ (no negative cycles) O(an + n2 log n) Johnson–Dijkstra  

ℝ (no negative cycles) O(an + n2 log log n) Pettie 2004 

ℕ O(an + n2 log log n) Hagerup 2000  
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3.5 Parallel Algorithms 

• Parallel all-pairs shortest paths algorithms 
• Based on parallel Bellman-Ford. 
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3.5.1 Distributed asynchronous 
algorithm 

• Bertsekas MIT 1983 
• Convergence of the distributed asynchronous 

Bellman-Ford algorithm from initial condition: 
       𝑥1(0)=0, 
       𝑥𝑖(0)=+∞, 𝑖 = 2, … ,𝑛. 
    due to monotonicity property of the fixed 
point operator: 

𝑥 ≤ 𝑥′ ⇒𝐹 𝑥 ≤ 𝐹 𝑥𝑥 . 
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3.5.2 Implementation on a computing 
node or Intel Xeon Phi 

• Computing node with several multicore CPUs 
On the Grid5000 testbed we cand find 

computing nodes with up to 4 CPUs with 16 
cores each. 
On Intel Xeon Phi computing accelerator we 

have around 60 to 70 computing cores and 
vectorization. 
Shared memory architecture. 
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3.5.2 Implementation on a computing 
node or Intel Xeon Phi 

• Threads solve independently a single 
destination shortest path problem. 

• Reduction operations (addition and 
maximum). 

• Parallel time complexity 
• 𝑶 𝒏𝒏𝒂 𝒏𝒏𝒏𝒏𝒏𝒏𝒕⁄  
One may expect that computing time will be 

divided by 50 on those platforms or Intel Xeon 
Phi computing accelerator 
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3.5.2 Implementation on GPUs 

• Task parallelism (same as on Intel Xeon Phi) 
Gain difficult to predict. 
    (may be 500 on P100 or V100)  
• Loop parallelism 
    each thread performs only: 

 𝑥𝑖 𝑘 + 1 = min 𝑥𝑖 𝑘 , min
𝑗∈𝐴 𝑖

𝑎𝑖𝑖 + 𝑥𝑗 𝑘 , 𝑖 = 2, …𝑛, 

for some 𝑖 ∈ 𝑁.  

Gain difficult to predict. 
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3.5.3 GPU 

• Implementation of parallel hybrid centrality 
algorithm on computing accelerators GPUs. 
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Figure 3.18 V100 GPU 
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3.5.3.1 GPU architecture 

• Streaming Multiprocessor (SM) based GPU 
architecture. 
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Figure 3.19 NVIDIA Kepler GK110 architecture 
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3.5.3.1 GPU architecture 

• Streaming Multiprocessor architecture  
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Figure 3.20. SM architecture (modified) 

Streaming  
Multiprocessor 

Single Precision  
cuda core 

Douple preci- 
sion unit 

Loading and  
Storing unit 

Special function 
unit 

10/9/2019 66 



3.5.3.2 GPU Synthesis 

• GPUs are massively parallel computing 
accelerators.  
Thousands of CUDA cores. 
GPUs provide all types of parallelism. 
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Figure 3.21 Several  types of parallelsm in GPUs  
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3.5.3.2 Current Actions 

• Parallel implementation of hybrid centrality 
algorithm via Gunrock 

• Gunrock: a CUDA library for graph-processing 
designed specifically for the GPU. It uses a 
high-level, bulk-synchronous, data-centric 
abstraction focused on operations on vertex 
or edge frontiers.  
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3.5.3.2 Current Actions 

• Gunrock achieves a balance between 
performance and expressiveness by coupling 
high-performance GPU computing primitives 
and optimization strategies, particularly in 
the area of fine-grained load balancing, with a 
high-level programming model that allows 
programmers to quickly develop new graph 
primitives that scale from one to many GPUs 
on a node with small code size and minimal 
GPU programming knowledge. 
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• Common work with: 
A. Benachour, LAAS-CNRS, U. of Toulouse &  
    U. Houari Boumediene 
Igor Kotenko SPIIRAS/ITMO U. 

Andrey Chechulin SPIIRAS/ITMO U. 
Maxim Kolomeec ITMO U. & U. Toulouse 
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3.6.3 Current Actions 
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3.6 Future work 

• 2nd Phase: develop and optimize a parallel 
hybrid centrality CUDA code. 
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3.6 Future work 

• 3rd phase: design and test other parallel / High 
Performance algorithms accelerated on GPUs for 
data structure analysis: 

Diameter of the graph; 
Maximum degree; 
Clique number… 
• Characterize groups of discussions in terms of the 

above metrics, e.g., politics, culture, food, 
sports,…  
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3.6 Future work 

• 4th phase: graph analysis in conjunction with 
additional data associated with records like  
Time of post; 
Number of likes and number of reposts; 
City of user. 
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4. Conclusions and future work 
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4.1 Present Work 

• In this talk, I have proposed a parallel hybrid 
centrality algorithm based on degree of nodes 
and  Bellman-Ford shortest paths algorithm in 
order to evaluate leaders in social nets 
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4.2 Present concern 

• With the development of the Internet and 
social networks, Big Data and graph analysis 
have become very important domains in 
Applied Maths. 
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4.2 Present concern 

• In particular, graph studies when combined 
with Artificial Intelligence can permit 
researchers in Human Sciences, journalists 
and politics, to understand  new interactions 
between people, new uses, new aspirations, 
new needs and trends in our societies, e.g., 
the « Gilet Jaune » movement in France 
whose very nature is plural and distributed. 

• They can permit also to increase security. 
 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 10/9/2019 77 



Acknowledgments 

• Andrey Chechulin, SPIIRAS/ITMO 
• Martin Strecker, IRIT 
• Max Kolomeec, ITMO/UPS 
• Igor Kotenko, SPIIRAS/ITMO 

 

Societies, Networks, Big Data, Graphs and 
Algorithms, ITMO University 10/9/2019 78 


	Societies, Networks, Big Data,�Graphs and Algorithms�                    �                   The Golden Ages of Graphs
	Outline
	1. Introduction
	1.1 Past work
	1.1 Past work
	1.2 Present activities
	1.3 Society, Graphs and Arts
	1.3.1 Genealogy and Heraldry
	1.3.2 Genealogy and History
	1.3.3 Genealogical tree in the Medieval & Renaissance Art
	1.3.3 Genealogical Trees in the Medieval & Renaissance Arts
	1.3.4 Graphs in  contemporary art
	1.3.4 Graphs in  contemporary art
	1.3.4 Graphs in  contemporary art
	Mark Lombardi’s drawings
	Mark Lombardi’s drawings
	1.4 Importance of Graphs
	2. Social networks, Big Data and Graphs
	2.1 Graphs
	2.2 Graph representation
	2.2.1 Undirected graphs
	2.2.2 Directed graphs
	2.2.3 Path
	2.3 Other networks
	3. Analyzing data structure
	3. Analyzing graph structure
	3. Analyzing graph structure
	3.1 Graph structure and metrics
	3.1.1 Centrality
	3.1 Tools to analyze graph structure
	3.1 Tools to analyze graph structure
	3.1 Problem
	3.1 Problem
	3.1 Problem
	3.1 Problem
	3.1 Problem
	3.2 Parallel hybrid centrality algorithm
	3.2.1 Baseline
	3.2.1 Baseline
	3.2.2 Sequential case, step 1
	3.2.2 Sequential case, step 1
	3.2.3 Sequential case, step 2
	3.2.4 Sequential case, step 3
	3.2.4 Sequential case, complexity 
	3.3 Single source shortest paths
	3.4 All-pairs shortest paths
	3.4.1 Shortest path problem formulation
	3.4.1 Shortest path problem formulation
	3.4.1 Shortest path problem formulation
	3.4.1 Shortest path problem formulation
	3.4.2 Bellman-Ford algorithm
	3.4.2 Bellman-Ford algorithm
	3.4.2 Bellman-Ford algorithm
	3.4.2 Bellman-Ford algorithm
	3.4.2 Bellman-Ford algorithm
	3.4.3 Bellman-Ford complexity
	3.4.4 All-pairs shortest path
	3.4.5 Other algorithms
	3.5 Parallel Algorithms
	3.5.1 Distributed asynchronous algorithm
	3.5.2 Implementation on a computing node or Intel Xeon Phi
	3.5.2 Implementation on a computing node or Intel Xeon Phi
	3.5.2 Implementation on GPUs
	3.5.3 GPU
	3.5.3.1 GPU architecture
	3.5.3.1 GPU architecture
	3.5.3.2 GPU Synthesis
	3.5.3.2 Current Actions
	3.5.3.2 Current Actions
	3.6.3 Current Actions
	3.6 Future work
	3.6 Future work
	3.6 Future work
	4. Conclusions and future work
	4.1 Present Work
	4.2 Present concern
	4.2 Present concern
	Acknowledgments

