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“If I had asked people what they wanted,

they would have said faster horses.”

Henry Ford
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Challenge 1898 Faster Horses?

1st international urban-planning conference in NYC 1898

Topic: growing crisis posed by urban horses and their output

London 1900: 11.000 cabs + X.000 buses (each 12 horses/day) > 50.000 horses

London Times 1894: in 50 years streets buried under 9 feet of manure

No solution – the conference was abandoned after 3 days (scheduled 10)

Unexpected solution – transition from horses to motor vehicles

Source: Stephen Davies, “The Great Horse-Manure Crisis of 1894”
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Challenge 2018 Flying Cars?

Transition from relatively isolated autonomous driver-vehicle systems to massively (inter)connected

driverless vehicles & global ecosystem.

Challenges for Connected Vehicles

more efficient (reduce pollution)

aware of the situation (but keep privacy)

secure (despite of increased attack surface)

robust against new threats (faking AI or sensors)

autonomous (e.g. handle ecosystem failures)

2018 Problem: Air

Pollution
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Connected Cars

Vehicular Ad Hoc Network (VANET) / Inter-Vehicle Communication (IVC)

VANET: Mobile ad-hoc network whose nodes are vehicles.

Modes: Car-2-Car and Car-to-Infrastructure,e.g. Road Side Units

Characteristics: self-organising, decentral

Applications: Platooning, electronic brake lights, traffic info systems, safety warning

Technology: WAVE (Wireless Access in Vehicular Environments);VVLN (Vehicular Visible Light Network)

Internet of Vehicles (IoV)

IoV: Highly integrated IoT manifestation with respect to vehicular Ecosystem

Extend VANET to: Humans (V2H), Sensors (V2S), Clouds (V2C), Internet (V2I)

Technology: Mobile Internet connection (GPRS, . . . ), GPS
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“Once you add a Web browser to a car,

it’s over, ”

Charlie Miller, Black Hat USA 2014
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Connectivity Enables Attacks

Attacks on safety

Unauthorized brake

Attack emergency call

Inflate airbags

Attacks on privacy

Trace vehicle movement

Compromise driver privacy

Economic Advantage

Steal car

Change driver’s toll bill

Manipulate e-charging

Manipulate traffic flow

Simulate traffic jam

Force green lights ahead

Manipulate speed limits
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Example: Security Dependencies in Systems of Systems

sense1(✙)

VEHICLE 1

gps1(pos)

send1( ,pos)

rec1(data,pos)

braking1

fwd1(data,pos)

sense2(data)

VEHICLE 2

gps2(pos)

send2(data,pos)

rec2( ,pos)

braking2

fwd2( ,pos)

sense3(data)

VEHICLE 3

gps3(pos)

send3( ,pos)

rec3( ,pos)

braking3

fwd3( ,pos)

sensew (data)

VEHICLE w

gpsw (pos)

sendw ( ,pos)

recw ( ,pos)

brakingw

fwdw (data,pos)

Authenticityi = Authenticityi−1 ∪ {auth(gpsi(pos),brakingw ,Driverw)}
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Security Risks - Connected Vehicles

ECU weaknesses

concept: post-quantum

production: back-doors

deployment: clone

generic: crypto library (rand)

process: key management

specific: appl. vulnerabilities

In-vehicle network weaknesses

No CAN device authentication

Limited bandwidth on CAN bus

prevents encryption

Easy external access (OBD)

Diagnostic subnetwork

Intra-vehicle interface weaknesses

Protocol vulnerabilities

Illegal devices access

Diagnostic and maintenance

Aftermarket dongles

Infotainment, mobile phones

Long-range & IVC network weaknesses

Firmware over the air (FOTA)

Security protections in TCUs

Remote diagnostic (and SIEM)

eCall crash report, emergency warn

T-BOX (crash-resistant telematics)

Remote engine start
Sensor & AI (ADAS) weaknesses

Sensors vulnerable physical attacks

ML is vulnerable to image tampering

ML privacy & transparency

Adversarial ML

Roland Rieke Machine Learning Methods for In-Vehicle Intrusion Detection ITMO’18 10



Automotive Threat Intelligence Framework

Detect: simple phenomena,

analysis, alerting

Act: access control, identity &

authentication, filtering

Observe (edge)

Detect: distributed phenomena

Correlate: agregation, priorisation

Orient (edge->core)
Detect: long/complex phenomena

Correlate: big data analytics

Diagnosis: risk assessment, threat

treatment

Decide (core)

Diagnosis: counter-measures

assessment, policy updates

Act: counter-measures deployment

Act (core->edge)
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Conformance Tracking: Expected vs. observed behavior

Conformance tracking

Sensors
Event pro-
cessing

Decision
support

Cyber-
physical
systems

Actuators

Observe

Manipulate

Cyber-physical observables

Control

Model
discovery

Anomaly
detection

System
model

System behavior:

possible sequences of

actions.

Outlier: An obser-

vation that differs

so much from other

observations as to

arouse suspicion that

it was generated by a

different mechanism.

(Hawkins, 1980)

Example:

Sensor1: It is dark.

Sensor2: The vehicle drives fast.

Event: Switch light off.
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Anomaly Detection (Behavior-based)

Behavior requirements:

cyclic messages,

protocol flow,

process behavior,

subsequent

payload

dependencies.

The behavior of a dis-

crete system can be

formally described by

the set of its possible

sequences of actions.
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On-board Security Analysis (Observe at the Edge)

You can’t defend. You can’t prevent.

The only thing you can do is detect and respond.

— Bruce Schneier

(1) detect & alert

specification

violation

(2) detect & report

abnormal

activities
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CAN intrusion detection methods

Detect specification violations

Formality, Location, Range

Sequence (Frequency, Correlation,

Protocol)

Semantic (Plausibility, Consistency)

Detect ECU impersonation

ECU voltage fingerprinting

ECU clock skew fingerprinting

ECUs check messages with own ID

(parrot defense)

remote frame (response time)

Detect packet insertions

entropy + state

time interval

OCSVM (DoS insert / delete packets)

LSTM

Detect behavior anomalies

deep learning (e.g. LSTM)

OCSVM

hidden Markov

entropy

process mining
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Behavior-based Models

Construction of Models

◮ from specifications
◮ from logged behavior without attacks (process mining, OCSVM)
◮ from logged behavior with marked attacks (SVM, neural networks)

Monitoring

◮ At operation time, the event stream is compared

to the expected behavior (represented by model).
◮ Anomalies indicate possible attacks
◮ Unknown types of attacks can be detected

Problems:

◮ Overfitting/Underfitting
◮ False positives
◮ state space explosion (model construction)
◮ insufficient throughput (classification of event stream)
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Process Mining & Synchronization

Training set: e1 , e2 , e3 , e4 , e1 , e5 , e6 , e4

Resulting model (Petri net generated by process mining with alpha algorithm):

s0s0 s1

s2

s3s3

s4s4 s6

s5

e1

e5

e2

e6

e3

e4

Conformance checking: e1, e2 , e6

ignore e6 and continue from s3

reset after e6 and continue from s0

ignore

reset

jump to some place reachable by transition e6, e.g. s4

jump
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(One-Class) Support Vector Machine

Classic

◮ Linear classifier
◮ “Max-margin”
◮ Resource efficient

One-Class

◮ Novelty/Outlier Detection
◮ Boundary of seen data

Computed by: http:

//scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
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Neural Network

Layers of Neurons

Non-linear classifier

Many parameters

Very flexible

...

...

...
...

...

Itime

IID

Ilen

IP1

IP8

H1

Hk

H1

Hl

O1

Om

Input

layer

Hidden

layer

Hidden

layer

Output

layer

. . .
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Long Short Term Memory (LSTM) Neural Network

Very complex

Computationally intensive

Models temporal relationships
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Methodology

1 Data Preprocessing

2 Creating Train/Test Split

3 Fit Model using Training-Set

4 Validate Model using Test-Set

5 Visualization

6 Real-time classification of data-stream
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Data Sets

ZOE Data Set

Collected from Renault Zoe electric car

about 10 Minutes; 1.000.000 messages

HCRL Data Sets

Made available by Hacking and

Countermeasure Research Lab

4 Data sets, 3.5 to 4.5 Million Messages

DoS, Spoofing/Impersonation (Fuzzy,

Gear), and RPM Attacks
HCRL: http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
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Attacks in Data Sets

ZOE

time ID len p1 p2 p3 p4 p5 p6 p7 p8 type

0.0 530 6 254 61 192 108 0 0 117 118 1

0.000206 394 6 255 240 0 6 64 0 117 118 1

HCRL DoS

0.852103 0 8 0 0 0 0 0 0 0 0 -1

0.852353 1349 8 216 0 0 138 0 0 0 0 1

0.852599 0 8 0 0 0 0 0 0 0 0 -1

HCRL Gear (RPM is similar)

1.348859 1087 8 1 69 96 255 107 0 0 0 -1

1.349731 848 8 5 32 180 104 119 0 0 142 1

1.349963 1087 8 1 69 96 255 107 0 0 0 -1

HCRL Fuzzy

0.972222 1869 8 68 51 82 16 80 85 48 212 -1

0.977422 1087 8 16 64 96 255 125 146 9 0 1

0.982961 1139 8 148 217 62 32 201 26 23 44 -1
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Data Sets: DoS vs. Gear Attack Distribution in HCRL Data
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Data Sets: Attack visualization by radial time intervals

Interval 1

Interval 2Interval 3

Interval 4

(a) ZOE data without attacks

Interval 1

Interval 2Interval 3

Interval 4

(b) HCLRDoS attacks (orange bars)

Roland Rieke Machine Learning Methods for In-Vehicle Intrusion Detection ITMO’18 25



Process Mining Problem (Alpha Algorithm): Construction time and size of

models

Petri net model discovery (alpha algorithm)

Model Start Events Time Tran. Places Edges

M500 0 500 1.176 83 112 455

M1000 200.000 1.000 10.611 97 232 1.423

M1000’ 490.000 1.000 1.717 95 170 879

M1000” 700.000 1.000 2.647 95 170 849

M2000 200.000 2.000 11.333 104 317 2.056

M2000’ 490.000 2.000 3.233 102 271 1.337

M2000” 700.000 2.000 29.213 101 313 1.819

M3000 200.000 3.000 65.473 104 566 4.603

M3000’ 490.000 3.000 235.250 104 623 4.899

M4000 200.000 4.000 75.018 105 537 3.816

M4000’ 490.000 4.000 1.671.779 105 900 7.994

Start: Position in the logfile where the first event for the model is taken.

Events: Number of consecutive events used for the model discovery.

Time: Maximum time in milliseconds for the generation of the model.

Trans., Places, Edges: Complexity of the generated Petri net.
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Model quality: Process Mining (Anomaly rate for strategy Ignore)

T
e
s
td

a
ta

:
1
.0

0
0
.0

0
0

e
ve

n
ts

Model Unknown Unanticipated Ignored (sum)

M500 96.938 5.210 102.148 (10,21%)

M1000 3.102 9.066 12.168 (1,22%)

M1000’ 4.158 880 5.038 (0,50%)

M1000” 4.170 645 4.815 (0,48%)

M2000 457 9.045 9.502 (0,95%)

M2000’ 809 490 1.299 (0,13%)

M2000” 985 1.130 2.115 (0,21%)

M3000 457 8.844 9.301 (0,93%)

M3000’ 457 451 908 (0,09%)

M4000 280 8.623 8.903 (0,89%)

M4000’ 280 455 735 (0,07%)

Very low anomaly rates when the model is carefully adjusted.
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Model quality: (One-Class) Support Vector Machines

One-Class SVM Results (no timestamps)

OCSVM detects clear outliers

SVM Results (no timestamps)

SVM can classify simple attacks

Both struggle with randomized attacks
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Model quality: Fully-Connected Neural Networks

Good results with small networks

Diminishing return for more coplex

networks

Can distinguish between random and

regular data

“Learns” ECU behaviour
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Model quality: LSTM Neural Networks

Can learn temporal behaviour partly

Mostly periodic CAN IDs

No external triggered Events

Needs more analysis

Computationally complex (memory

error on 200GB machine)
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Findings: Process Mining (simple alpha algorithm)

Model preparation: state space explosion problems

Model execution: resource efficient

Model synchronization: further research needed

Model quality:

◮ In unsupervised learned model normal behaviour wrongly classified as anomaly is highly

dependent on synchronization strategy
◮ Detection rate (false positives/negatives with respect to attacks) not yet evaluated
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Findings: (One-Class) Support Vector Machine

Potential to detect simple intrusions/faults

Resource efficient

Better results with improved versions

◮ Andreas Theissler: Anomaly detection in recordings from in-vehicle networks

Pure classification of very limited use
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Findings: Neural Networks

Very good classifier at low complexity

Tool for specification extraction

Detection known and random attacks

Not suited for general anomaly detection
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Findings: Long Short Term Memory (LSTM) Neural Network

Can get very complex

Detection of simple temporal behaviour

Did not detect missing events

Successful application of more complex networks

◮ Chockalingam et al. 2016: Detecting Attacks on the CAN Protocol With Machine Learning
◮ Taylor, Leblanc and Japkowicz 2018: Probing the Limits of Anomaly Detectors for Automobiles

with a Cyber Attack Framework
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Lessons Learned

Machine learning is a viable option

Applicable on existing architecture design

More analysis with more driving situations and sophisticated attacks needed

Actual deployment on embedded systems may face performance problems

Problems with long term phenomena:

ML robustness, transparency, explainability

Other Results from Literature

◮ Taylor et al. 2017: one-step Markov model is not much better than guessing, two-step model is

worse
◮ Choi et al. 2018, Cho et al. 2016: Detection of ECU impersonating attacks by physical (voltage)

fingerprinting
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Conclusions – ML for In-vehicle Intrusion Detection

Radial Visualization

s0 s1

s2

s3

s4 s6

s5

e1

e5

e2

e6

e3

e4

Process Mining - complex, transparent (OC)SVM - fast, fuzzy problem

Neural Network - flexible, no state LSTM - slow, state
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Intrusion Detection in Context

Security Strategy Management

Abstract
events

Sensors
Event pro-
cessing

Decision
support

Cyber-
physical
systems

Actuators

Observe

Manipulate

Cyber-physical observables

Control

Attacker

’What-if’ simulation

Simulation
results

Conformance tracking

Anomalies

Compliance tracking

(predicted)
Compliance
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Security
strategy
model
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