
Architecture and Models
for Security Policy Verification

I.V. Kotenko, A.V. Tishkov, O.V. Chervatuk1

1. Introduction
Policy-based security management of computer networks is one of the most
actual directions of research in information security area. At present the IETF
[1] recommendations are commonly accepted standard for the architecture of
policy-based management systems. According to these recommendations
such architecture should contain the centralized repository of policy rules for
entire system, thus making the policy available for analysis and verification.
This paper elaborates the architecture and models of security policy
verification system – SEcurity Checker (SEC) – originally suggested in [2]
and implemented corresponding to the IETF recommendations.

In the paper the improved architecture of Security Checker is considered
and the mechanisms of operating with the policies of three levels are
described: (1) upper-level, that is approximated to the user requirement
language, (2) intermediate level, classifying rules according to several
categories, and (3) low-level, describing the policy in the format of Common
Information Model (CIM). The approach to the design and implementation of
SEC kernel is given. An example of authorization policy conflicts emulation
and detection is suggested. The relevant works are analyzed.

2. Improved architecture of Security Checker
In SEC the policy description language has three levels: upper, intermediate,
and low (fig. 1).

Upper-level language (UL) describes the problem from generalized point
of view. Formulations allow mentioning the groups of devices and the types
of applications (“subnet S should not be accessible from host H by protocol
P”). For specification of upper-level policies a scripting language is used as
well as the set of translators from upper (U) level to the intermediate (I) one
(UI-translators).

Upper-level rules are translated to the intermediate level (specified in
intermediate level language (IL)) into the one of six categories of policy rules:
authentication, authorization, filtering, confidentiality, operation rules, and
vulnerability assessment rules. For each mentioned category an UI-translator
is created. UI-translator receives upper-level rule as input and gives XML
documents as output. These XML documents are valid according to XML-
schema of corresponding category.

One of non-trivial translators from upper level to the intermediate one is
UI-translator that defines filtering policy. In this task context the nodes of
computer network are divided into two types: filtering and non-filtering (see
fig. 2).

When a policy specifying non-filtering node is set, a task of using filtering
nodes for granting or denying access to protected node is solved on the graph
representing the network topology. This task is solved as a one about minimal

1 The research is supported by the “Fund for support of national science”, grant of Russian
Foundation of Basic Research (№ 04-01-00167), grant of the Department for Informational
Technologies and Computation Systems of the Russian Academy of Sciences (contract
№3.2/03) and partly funded by the EC as part of the POSITIF project (contract IST-2002-
002314).

graph cut. Fig. 2 gives an example of creating four filtering rules by UI-
translator, when upper level policy requires prohibiting the access between
non-filtering nodes.

Fig.1. Generalized SEC architecture

Fig.2. Filtering (f=1) and non-filtering (f=0) nodes

At extending of upper-level language with new constructions, a set of new

UI-translators should be uploaded to the system for each category involved
into such extending. Only those extensions are allowed, that do not change
existing sublanguage. Thus, the SEC architecture is implemented as open for
interpreting rules of other languages, such as Ponder [3] and other user-
defined languages.

Finally, low-level language (LL) is a translation of intermediate level
rules to object-oriented format of Common Information Model (CIM).

Structure of SEC kernel contains two types of basic elements: verification
manager and verification module (VM).

Each verification module has its own knowledge base (as axiomatics,
temporal logics formulae, action semi-lattices and others) and implements its
own algorithm for checking policies consistency and applicability to given
system description. Besides that, each module declares security categories
with which it works.

Verification manager, getting intermediate and low-level policies as input,
calls verification modules in parallel or subsequently. Parallel verification is
possible only for modules that do not change the set of rules. Modules, that
delete, change or add rules, are launched subsequently, getting at input a
policy that is potentially changed by preceding modules. Such algorithm of
kernel processing implies iterative calling of modules sequence. Iterations
continue until the set of rules stops changing or until stop condition executes,
in simplest case — by the explicit limitation of iterations number.

3. Security categories
As it was mentioned above, the intermediate level language is based on XML
schemas for six categories of rules.

Authentication rule contains subjects (roles and users), objects (services
defined on system description language [1]), actions that can be performed on
the services, authentication method and security level, which the rule is
associated with. The authentication method is defined by classes which are
derived from CIM-class AuthenticationCondition. These classes are as
follows: SharedSecretAuthentication, AccountAuthentication,
BiometricAuthentication, NetworkingIDAuthentication,
PublicPrivateKeyAuthentication, KerberosAuthentication,
DocumentAuthentication, PhysicalCredentialAuthentication. All rules are
accompanied with security level label. Security system can switch from one
security level to another if, for example, the attack is detected.

Authorization rule is formulated as if-then rule. The conditional part
contains quantifier-free predicate formula using NOT, AND, and OR logical
operations. Atoms are the definitions of subject, object, action, security level,
and the condition of system state. System state is described by the current
state of services (run, stopped, waiting, busy), the results of authorization and
authentication rules enforcement (the subject is authorized/authenticated for
performing the action on the object), and user-defined system state
conditions. The main used CIM-classes are as follows: Policy,
AuthorizedSubject, AuthorizedObject, AuthorizedPriviledge,
ComputerSystem, Role, and Identity.

Filtering rule represents commonly used access control list, each row of
which consists of source address and port, destination address and port,
deny/allow privilege and, additionally, security level. The used CIM-classes
are Policy, FilterList, and FilterEntry.

Confidentiality rules are currently considered only for communication
security, and define security protocols for data channels. The corresponding
XML schema supports SSL or IPSec protocol. The main used CIM-classes
are Policy, IPSecRule, and SSLRule.

Operational rules are specified by system state condition and actions,
which should be performed on objects when system state matches the
condition of a rule. The corresponding XML schema contains components for
definition of network services installed on hosts, and actions which can be
performed on those services. The CIM-class Policy is used, and three classes
are added to CIM policy class hierarchy. They are OperationalRule,
StatusCondition и OperationalAction.

Vulnerability assessment rules are created by use of vulnerability database
[4]. The rule contains vulnerability ID, reference to exploit, name and version
of vulnerable software, information about patch/update that eliminates the
vulnerability, and some additional information [5].

4. Kernel implementation
Basic SEC kernel classes are verification manager and verification module.

Verification manager (VerificationManager) gives to verification modules
the system specification (in system description language) and fragments of
policy specifications, according to security categories, for which the
verification module is responsible. Besides that in suggested representation
the manager gives out information about verification results, information
about contradictions, if they appeared, and achieved security level. This class
implements design pattern “singleton” [6], because verification manager
should be only one in the system.

UML-representation for verification manager is given in fig. 3. For each
public field the existence of set value and get value functions is supposed.

Fig 3: VerificationManager class

In this paper let us consider only several main fields and methods of class

VerificationManager:
• Field HashMap splUpdates contains references to objects SPLUpdates

created in each module. Objects SPLUpdates store list of changes that
are necessary to be applied to rules set of policy for resolution of
conflicts that were revealed during verification.

• Field ActualSDL actualSDL is revised network topology, in which
some services are blocked by policies. ActualSDL contains list of
blocked services.

• Field ConflictInfo conflictInfo contains information about conflicts
revealed in the process of validation and verification.

• Method updateSPL() implements rules sets changing, proposed by
modules.

• Method validate() without parameters checks rules for each security
category using all registered and loaded modules that are responsible
for this security category.

• Method validate() with parameters performs detecting and resolving
rules conflicts within one security category. Security category and
module that performs checking are passed as method parameters.

• Method verify() checks consistency of entire rules set and their
applicability to the given systems description using special module.

Verification module VerificationModule (fig. 4) performs validation and

verification of categories rules SecurityProperty, for which it is responsible
and which are listed in corresponding field.

Fig. 4: VerificationModule class

Main methods of class VerificationModule are validate() and verify().

Through these methods class VerificationModule delegates corresponding
functionality to class VerificationModule.

5. Example of conflict detection
At current implementation of three verification modules is being done: (1)
based on Event Calculus [7], (3) based on Model Checking [8], and (3) by
creating the semi-lattices of actions.

Let us describe a simple example of modeling and detection of
authorization conflict implemented by SPIN models checker [9].

Authorization conflict appears in the case when one user is attached to
two roles R1 and R2 that have contradictory privileges for the same action:
for one role there is permission, and for the other there is prohibition.

Key blocks of the program are two processes. The first process appoints
and deletes belonging of a user to one of two roles (R1 or R2) at random. The
following code corresponds to assigning a user to a role:

active proctype userRoleAssignment()
{
…
 :: (r.q<max_q_roles-1)->
 atomic {
 r.q++;
 if
 ::r.ar[r.q]=R1;
 ::r.ar[r.q]=R2;
 fi
 }
…

The second process models print requests, sent by user at random

moments. Procedure IsAssigned checks user’s belonging to the given role.

The following code, receiving print request, assigns true value to variable
deny (if the user at current belongs to role R1), or variable allow (if it belongs
to role R2):

::printer_in?action,rr-> atomic
 {
 deny=false;
 allow=false
 IsAssigned(rr,R1,R1Res);
 IsAssigned (rr,R2,R2Res);
 if
 ::R1Res->deny=true
 ::else
 fi
 if
 ::R2->allow=true
 ::else
 fi
…

Conflict appearance is in non-fulfillment of the following system state

correctness condition: allow and deny cannot be performed simultaneously:

assert((allow && !(deny)) || (!(allow) && deny))

6. Relevant works
Many contemporary policy-based security systems are well-matured, but do
not involve all the security categories that are presented in this paper and have
differing architectures.

Extensible markup language for access control XACML [10] corresponds
to SEC authorization policy. Three-level structure of policy specification (rule
– policy as set of rules – set of policies) allows to build flexible resolution
system using the formalized notion of decision algorithm on the levels of
policy and policy set. Unlike the suggested approach, XACML does not have
special system specification language, and the specification of network nodes
is a part of rules description.

Language Ponder [3] contains the rules of positive and negative
authorization, the rules of obligation and delegation. The authors of Ponder
suggested several interesting approaches for conflict resolution strategies [11,
12], which are nevertheless too specific to the policies formalism introduced.

Flexible Authorization Framework (FAF) [13, 14] corresponds to access
control systems. The FAF advantages are the detailed considering the
hierarchies of objects, subjects and privileges on access estimation. The
formalism used allows specifying of positive and negative authorization,
involves terms of privileges propagation through hierarchies, algorithms and
strategies of conflicts resolving on authorization.

There are other approaches representing different techniques for conflicts
detecting and resolving in security policies. Here we mark the deontic logics
approach [15], dynamic conflict detection with temporal logics [16, 17], as
well as one of basic papers on classification of security policies conflicts [18].

Conclusion
This paper proposes the Security Checker architecture for policy-based
security management system. Three-level structure for policies definition
language is defined: from nearly natural upper-level language to object-

oriented policy representation in CIM format. Security categories are
specified, into which policy rules are separated. UML representation of
principal classes of SEC kernel is given, the idea for implementation of
conflict detecting in authorization policy is demonstrated.

Further work deals with the enhancement of techniques and algorithms of
security policy verification and the design of SEC prototype basing on web-
services technology.

References

1. IETF Policy Framework (policy) Working Group.

http://www.ietf.org/html.charters/policy-charter.html
2. I.V. Kotenko, A.V. Tishkov. Events calculus for specification and

verification of security policies for protected computer network. 3rd
Russian Conference “Mathematics and Security of Information
Technologies”. Moscow, MSU, 2004.

3. Ponder: A Policy Language for Distributed Systems Management.
Department of Computing, Imperial College. http://www-
dse.doc.ic.ac.uk/Research/policies/ponder.shtml

4. OSVDB: The Open Source Vulnerability Database. http://www.osvdb.org/
5. M. Rohse. Vulnerability naming schemes and description languages: CVE,

Bugtraq, AVDL and VulnXML. SANS GSEC PRACTICAL, 2003.
6. M. Grand. Patterns in Java, Volume 1, A Catalog of Reusable Design

Patterns Illustrated with UML. John Wiley & Sons, 1998.
7. R.A. Kowalski, M.J. Sergot. A Logic-Based Calculus of Events. New

Generation Computing, No 4, 1986.
8. E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking. MIT Press, 1999.
9. G.J. Holzmann. The Spin Model Checker. IEEE Trans. on Software

Engineering, Vol.23, No.5, 1997.
10. OASIS: eXtensible Access Control Markup Language (XACML).

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
11. L. Lymberopoulos, E. Lupu, M. Sloman. Ponder Policy Implementation

and Validation in a CIM and Differentiated Services Framework.
IFIP/IEEE Network Operations and Management Symposium (NOMS
2004), Seoul, Korea, 2004.

12. A. Bandara, E. Lupu, A. Russo. Using Event Calculus to Formalize Policy
Specifications and Analysis// IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, 2003.

13. S. Jajodia, P. Samarati, M.L. Sapino, V.S. Subrahmanian. Flexible
support for multiple access control policies. ACM Trans. Database
Systems, Vol. 26, No.2, 2001.

14. S. Jajodia, P. Samarati, V.S. Subrahmanian. A Logical Language for
Expressing Authorizations. IEEE Symposium on Security and Privacy,
1997.

15. L. Cholvy and F. Cuppens. Analysing consistency of security policies.
Proceedings of IEEE Symposium on Security and Privacy, 1997.

16. N. Dunlop, J. Indulska, K. Raymond. Methods for Conflict Resolution in
Policy-Based Management Systems. Proceedings of the Seventh IEEE
International Enterprise Distributed Object Computing Conference
(EDOC'03), 2003.

17. N. Dunlop, J. Indulska, K. Raymond. Dynamic Conflict Detection in
Policy-Based Management Systems. Proceedings of the Sixth IEEE

International Enterprise Distributed Object Computing Conference
(EDOC'02), 2002.

18. E. Lupu, M. Sloman. Conflict Analysis for Management Policies. Fifth
IFIP/IEEE International Symposium on Integrated Network Management
IM'97, San-Diego, 1997.

