
S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 327 – 342, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Simulation of Internet DDoS Attacks and Defense

Igor Kotenko and Alexander Ulanov

St. Petersburg Institute for Informatics and Automation (SPIIRAS),
39, 14 Liniya, St.-Petersburg, 199178, Russia

{ivkote, ulanov}@iias.spb.su

Abstract. The paper considers the software simulation tool DDoSSim which
has been developed for comprehensive investigation of Internet DDoS attacks
and defense mechanisms. This tool can be characterized by three main peculi-
arities: agent-oriented approach to simulation, packet-based imitation of net-
work security processes, and open library of different DDoS attacks and
defense mechanisms. DDoSSim allows deeply investigating various attacks and
defense methods and generating valuable recommendations on choosing the
best defense. In the paper the agent-oriented approach suggested is considered.
The taxonomy of input and output parameters for simulation is outlined. The
main DDoSSim components are specified. One of the experiments on protec-
tion against DDoS attacks demonstrates some DDoSSim possibilities. We con-
sider different phases of defense operations – learning, decision making and
protection, including adaptation to the actions of malefactors.

Keywords: Security modeling and architecture, Security models for ambient
intelligence environments, Infrastructure security, Security simulation, DDoS.

1 Introduction

The present theoretical investigations in information security of large-scale systems
do not allow security experts to formalize adequately the antagonistic counteraction of
network attacks and defense. Though the researchers can represent particular defense
mechanisms, the understanding of security systems as holistic entities is a very diffi-
cult task. This understanding depends on many dynamical interactions between par-
ticular security processes and cyber-counteraction between antagonistic elements. It is
especially right, taking into account the evolution of the Internet into decentralized
distributed environment where a huge number of cooperating and antagonistic soft-
ware agents exist and interact.

One of the very dangerous classes of malefactors’ attacks is DDoS [16]. Distrib-
uted, dynamical and cooperative character of such attacks complicates attack detec-
tion and protection. Realizing effective DDoS defense system is a very complicated
problem. Effective defense includes the mechanisms of attack prevention, attack de-
tection, tracing the attack source and attack counteraction. Adequate protection can
only be achieved by cooperation of different distributed components [17].

328 I. Kotenko and A. Ulanov

The main task of defense systems against DDoS is to accurately detect these at-
tacks, quickly respond to them [26] and recognize the legitimate traffic that shares
the attack signature and deliver it reliably to the victim [17]. Traditional defense in-
clude detection and reaction mechanisms. Different network characteristics are used
for detection of malicious actions (for example, source IP address [21], traffic vol-
ume [8], and packet content [19], etc.). To detect abnormal network characteristics,
many methods can be applied (for instance, statistical [12], cumulative sum, pattern
matching, etc). As a rule, the reaction mechanisms include filtering [20], congestion
control [14] and traceback [11]. But, as a result of several reasons (detection of
DDoS attack is most accurate close to the victim, separation of legitimate is most
successful close to the sources, etc.), adequate victim protection to constrain attack
traffic can only be achieved by cooperation of different distributed components [16,
17]. There are a lot of architectures for distributed cooperative defense mechanisms
[2, 4, 10, 17, 19, 26, 27, etc.]. For example, [2] proposes a model for an Active Se-
curity System, comprising components that actively cooperate in order to effec-
tively react to a wide range of attacks. COSSACK [19] forms a multicast group of
defense nodes which are deployed at source and victim networks. The SOS [10]
uses a combination of secure overlay tunneling, routing via consistent hashing, and
filtering. A collaborative DDoS defense system proposed in [27] consists of routers
which act as gateways. The distributed defense system described in [26] protects
web applications from DDoS attacks. The DefCOM system [17] uses a peer-to-peer
network of cooperative defense nodes.

In our opinion, it is possible to answer soundly on the questions about defense
against network attacks, including DDoS attacks, by modeling and simulation of pre-
sent and new attacks and defense mechanisms. It is very important to use adequate
modeling and simulation approach and powerful simulation environment which give a
researcher an opportunity to comprehensively investigate various modes of attack and
defense operation, insert new methods, analyze efficiency of defense (for example,
false positives, false negatives; percent of normal traffic filtration), etc.

Our research goal is to suggest a common approach and simulation environment
for investigation and elaboration of adequate defense methods against DDoS attacks
which can produce well-grounded recommendations on the choice of defense mecha-
nisms that are the most efficient in particular conditions. The rest of the paper is struc-
tured as follows. Section 2 outlines the common approach for simulation. Section 3
describes attack and defense mechanisms used. Section 4 presents the taxonomy of
input and output parameters for simulation. Section 5 considers the software environ-
ment developed and analyses the issues of network topology selection. Section 7
demonstrates the example of experiments provided. Conclusion outlines the main re-
sults and future work guidelines.

2 Simulation Approach

We try to use the agent-oriented approach to simulate security processes in the Inter-
net. It supposes that the cybernetic counteraction is represented as the interaction of
different teams of software agents [6, 24, 25]. The aggregated system behavior be-
comes apparent by means of the local interactions of particular agents in dynamic

 Simulation of Internet DDoS Attacks and Defense 329

environment that is defined by the model of computer network. We distinguish at
least two agent teams: the team of agents-malefactors and the defense team. The
agents from the same team collaborate to realize the threat or to defense the network.

It is assumed the competing agents gather information from different sources,
operate with uncertain knowledge, forecast the intentions and actions of opponent,
estimate the possible risks, try to deceive each other, and react on opponent’s ac-
tions. The choice of behavior for each team depends on the chosen goal of function-
ing and is defined dynamically depending on the opposite team actions and the
environment state.

The mechanisms of agent coordination are based on the three groups of proce-
dures [24, 25]: acts consistency maintenance; agents’ functionality monitoring and
recovery; and communication selectivity support (to choose the most “useful”
communication acts). The models of agent functioning are to foresee, what each
agent knows, what task has to be solved and to which agent it must address its re-
quest to receive such information if it is outside of its competence. The messages of
one agent are to be represented in such terms that are understandable by other
agents.

It is supposed that agents are to be able to realize the mechanisms of self-
adaptation. The team of agents-malefactors evolves with the aid of generation of new
instances and types of attacks and attack scenarios to overcome the defense subsys-
tem. The team of defense agents adapts to the actions of malefactors by changing the
security policy, forming new instances of defense and security profiles.

The conceptual model of agents’ counteraction includes: (1) Ontology of applica-
tion domain containing application notions and relations between them; (2) protocols
of teamwork (for team of malefactors and team of defense); (3) Models of individual,
group and team behavior of agents; (4) Communication component for agent message
exchange; (5) Models of environment – the computer network, including topological
and functional components.

It is proposed to use various models to research the processes of cybernetic coun-
teraction. The choice of specific models depends on the necessary simulation fidelity
and scalability. For example, analytical models let imitate the global processes hap-
pening in Internet, but describe the processes only on an abstract level. Packet-level
simulation gives the opportunities to imitate the proceeding processes with high fidel-
ity. They represent the network attack and defense actions as the exchange of packets.
The greatest fidelity is archived with the hardware testbeds, but it succeeds in simulat-
ing the sufficiently limited fragments of agents’ interactions. The approach used in the
paper is based on packet-level simulation with the use of tools for network processes
imitation as basic level of simulation environment.

3 Attacks and Defense Mechanisms

DDoS attacks agents are divided into two classes: “daemon” and “master”. Daemons
are attack executors. Master coordinates them. On the preliminary stage daemons and
master are deployed on available (already compromised) hosts. The important pa-
rameters are the quantity and “distribution” of agents. Then the phase of team estab-
lishing takes place. Daemons send to master the messages with information that they

330 I. Kotenko and A. Ulanov

are alive and ready to work. Master stores the information about team members and
their status. The malefactor sets the mutual team goal – to start the DDoS attack in the
given moment of time. Master receives the attack parameters. Its goal is to send it to
all available daemons. Then daemons begin to act. Their local goal is to execute the
master instruction. They start to send the attack packets to the given host in the given
mode. Master examines daemons periodically to know that they are workable. Master
controls the given attack mode by receiving the replies from daemons. When a dae-
mon does not answer, master decides to change attack parameters. For example, it can
send the commands to change the attack intensity to all or particular daemons. Dae-
mons can execute the attack in several modes. This influences on the possibility of de-
fense team to detect and block the attack and to trace and defeat the attack agents. The
mode can be specified, for example, by the intensity of packet sending (packets per
second) or (and) the method of IP address spoofing. The malefactor can stop the at-
tack giving to master the command “stop the attack”. Master resends this command to
daemons, and they stop the attack.

Defense agents are classified into the following classes: initial information proc-
essing (“sensor”); secondary information processing (“sampler”); attack detection
(“detector”); filtering (“filter”); investigation (“investigator”).

In the initial moment the defense agents are deployed on the hosts corresponding to
their roles: sensor and sampler – on the way of traffic to the defended host; detector –
on any host of defended host subnet; filter – in the entrance to the defended host sub-
net; investigator – on any host outside of defended host subnet.

Sensor processes information of network packets and collects statistical traffic data
for the defended host. Sensor can calculate the amount of traffic (bits per second –
BPS) and determine the addresses of hosts that make the largest traffic. The functions
of sensor can be fulfilled by sampler. Sampler processes the network packets and cre-
ates the model of normal functioning for the given network (in learning mode). Then
in normal mode it analyses and compares the traffic with the model of normal traffic.
It picks out the addresses of hosts that do not correspond to the model and sends them
to detector. The examples of methods which can be realized by sampler are Hop
counts Filtering (HCF) [9], Source IP address monitoring (SIPM) [22], Bit per Second
(BPS), etc.

The detector local goal is to make a decision about the beginning of attack on the
basis of sensor or (and) sampler data. Detector sends the list of attack addresses re-
ceived from sensor or (and) sampler to filter and investigator. The filter local goal is
to filter the traffic on the basis of detector data. The investigator goal is to trace and
defeat the attack agents. After receiving a message from detector it examines the ob-
tained IP addresses for the presence of attack agents and tries to defeat them.

4 Taxonomy of Input and Output Parameters for Simulation

We differentiate the input parameters which specify DDoS attack and defense mecha-
nisms for simulation.

The scheme of DDoS attack parameters is based on the attack taxonomy sug-
gested in [15]. The following criteria were selected:

 Simulation of Internet DDoS Attacks and Defense 331

• Victim type. Application, host or network can be chosen. It is necessary to set vic-
tim IP address and port.

• Attack type. Brute-force (UDP/ICMP flood, smurf/fraggle, etc.) or semantic (TCP
SYN, incorrect packets, hard requests).

• Impact on the victim. One can choose a disruptive attack (when all daemons attack
simultaneously) or a degrading attack (when daemons join the attack one by one).
It is easier to detect the attack in the first case.

• Attack rate dynamics. It can be constant or variable when the intensity changes in
time. The function of changing attack packet rate is given to daemons. The change
can be increasing (daemons send more and more packets) or fluctuating.

• Agents’ set permanency. The set of agents can be persistent (all daemons partici-
pate in attack) or variable. In last case master can divide all daemons to several
groups and each of them attacks alternately.

• Possibility of exposure. The attack can be discovered when it is possible to distin-
guish the attack packets. We distinguish non-filterable and filterable attacks. In
non-filterable attack, the attack packets are formed to be indistinguishable from
legitimate. In filterable attack, the attack packets can be discovered by field val-
ues, size, exploited protocol, etc.

• Source addresses validity. Attacker can use the valid (real) or spoofed source ad-
dress sending the attack packets. This address can be routable or non-routable.
The method of spoofing may be as follows: (1) Without spoofing (“no”) – the real
address of host (where daemon is deployed) is used; (2) “Constant” – an address
is randomly chosen, then it is used for sending the attack packets; (3) “Random” –
with every new attack packet a new address from the given range of addresses is
randomly chosen. This range does not intersect with the range of addresses used
in the given network; (4) “Random real” – with every new attack packet a new
address from the given range of addresses is randomly chosen. This range is in the
range of addresses used in the given network.

• Degree of automation. Attack can proceed automatically after setting the parame-
ters or by the malefactor control. In such a case he (she) can interfere and change
one of parameters on all phases of attack. The communication mechanisms be-
tween daemons and master can be direct (master knows the addresses of all dae-
mons) or indirect (agents communicate via a server).

The scheme of DDoS defense parameters is built on the basis of classification
proposed by authors. The criteria selected are as follows:

• Deployment location: source, intermediate or defended subnets.
• Mechanism of cooperation. The mechanism of particular components operation

can be centralized or decentralized. In the last case the defense components are
autonomous and can combine their efforts.

• Covered defense stages. The stages (mechanisms) the defense method can imple-
ment are as follows: (1) attack prevention; (2) attack detection; (3) attack source
detection; (4) attack counteraction.

• Attack detection technique. There are two types of detection: misuse and anomaly.
One chooses one particular detection method or the set of methods.

332 I. Kotenko and A. Ulanov

• Attack source detection technique. Attack source detection (or “traceback”) can
be realized by packet signatures, packet marking, generation of auxiliary pack-
ets, etc.

• Attack prevention/counteraction technique. One can use filtering (of packets or
flows), resource management (differentiation, change of quantity, roaming) and
authentication.

• Technique for model data gathering. Data can be generated by learning or be ob-
tained from external sources.

• Determination of deviation from model data. One can use thresholds, rules (for
packets and connections), determining fluctuation in probabilistic traffic parame-
ters, and data mining (depending on the kind of defense mechanism).

The output parameters used to estimate the defense mechanisms are as follows:
List of detectable attacks; Time of attack detection (from the start of attack); Time of
attack reaction (time from detection to counteraction); Percent of false positives; Per-
cent of false negatives; Percent of normal traffic filtration; Computational complexity
(quantity of computational resources used), etc.

5 Simulation Environment

The simulation environment DDoSSim architecture consists of the following compo-
nents (figure 1): OMNeT++ Framework, INET Framework, Multi-agent & DDoS
Framework.

Multi-agent simulation is implemented in Multi-agent Framework that uses the li-
brary of DDoS attack and defense mechanisms called DoS Framework. INET Frame-
work is used to simulate the IP nodes. It is an OMNeT++ model itself.

OMNeT++ Framework [18] is a discrete event simulator. Simulation models are
composed of hierarchically nested modules that interact due to message passing
(figure 1, OMNeT++ Framework: simulation model and component library). INET
Framework and Multi-agent DDoS Framework are the OMNeT++ models. The ex-
change of messages between modules happens due to channels (modules are con-
nected with them by the gates) or directly by gates. A gate can be incoming or outgo-
ing to receive or to send messages accordingly. Channel has the following properties:
propagation delay, bit error rate and transmission data rate.

OMNeT++ INET Framework is the OMNeT++ modular simulation suite with a
realistic simulation of the Internet nodes and protocols. The highest IP simulation ab-
straction level is the network itself, consists of IP nodes. IP node can represent router
or host. IP node in INET Framework corresponds to the computer representation of
Internet Protocol (figure 1, INET Framework). The modules of IP node are organized
in such a way like operating system process IP datagram. The module that is respon-
sible for network layer (implementing IP processing) and the “network interface”
modules are mandatory. Additionally one can plug the modules that implement higher
layer protocols: transport (UDP, TCP, including TCP Sockets; routing: MPLS, LDP,
RSVP, OSPF-TE) and application (HTTP, Telnet).

 Simulation of Internet DDoS Attacks and Defense 333

OMNeT++ Framework

Component library

Simulation kernel

INET Framework

Protocol models: IPv4, Transport

Link models: Ethernet, PPP

Device models: Host, Router

Application models: HTTP, Telnet

Multi-agent & DDoS Framework

Application models: packet analyzer, filtering table,

Agent models: basic agent, attack and defense agents

Protocol models: agent communication language, application-agent protocol

- Deployment location
- Mechanism of cooperation
- Covered defense stages
- Attack detection technique
- Attack source detection technique
- Attack prevention/counteraction technique
- Model data gathering technique
- Determination of deviation from model data

- Victim type
- Attack type
- Impact on the victim
- Attack rate dynamics
- Persistent of agent set
- Possibility of exposure
- Source address validity
- Degree of automation

Attack module

Defense module

attack, defense

Simulation model

User interface:
graphical, command

Fig. 1. DDoSSim Simulation environment architecture

Multi-agent & DDoS Framework is the INET Framework modular suite aimed to
simulate the DDoS attack and defense mechanisms on the basis of agent team coun-
teraction (figure 1, Multi-agent DDoS Framework). One can distinguish between
DDoS Framework and Agent Framework architecturally.

DDoS Framework suite consists of DDoS attack and defense modules (figure 1,
Attack module, Defense module) and the modules that expand IP node from INET:
the filtering table and the packet analyzer. Attack and defense modules are the appli-
cations and are deployed on the network layer of IP node. There were implemented
different DDoS attacks and defense mechanisms, for example, Hop-count Filtering
(HCF), Source IP address monitoring (SIPM), BPS, etc. To set the DDoS attack con-
ditions it is necessary to define the corresponding parameters, including victim type
(host), attack rate dynamics (function of attack packets sending rate), spoofing tech-
nique (no spoofing, random, subnet), etc. Also one need to set up the defense parame-
ters, including deployment location (defended, intermediate, source subnet), detection
technique, model data gathering technique and its parameters (time interval and time
shift of data collection), etc.

Agent Framework consists of modules representing agents which are implemented
as applications. There were used the elements of abstract FIPA architecture [7] during
agent modules design and implementation. Agent communication language is imple-
mented for agent interactions. The message passing happens above TCP protocol
(transport layer). Agent directory is mandatory only for agents that coordinate other
agents in teams. Agent can control other modules (including DDoS Framework mod-
ules) due to messages.

Agents are deployed on hosts in the simulation environment. Their installation is ful-
filled by connecting to the modules serving transport and network layers of protocol

334 I. Kotenko and A. Ulanov

stack simulated in OMNeT++ INET Framework. The generalized representation of
agent “sampler” structure is depicted in figure 2. Sampler contains the transport layer
(depicted as a message), needed to communicate with other agents, network layer (de-
picted as a blue cube) to collect traffic data and agent kernel (depicted as a shape of hu-
man image). The agent kernel contains communication language, knowledge base and
message handlers from the neighbor modules. The representation of sampler deploy-
ment into simulation environment is depicted in figure 3. One can see that the agent is
plugged into host through the “tcp” module implementing TCP protocol. Agent is also
connected with the “sniffer” module used to analyze network packets.

Fig. 2. General structure of agent “sampler” Fig. 3. Deployment of agent “sampler” into the

environment

The example of multi-window user interface of the simulation environment is de-

picted in figure 4. At the basic window of visualization (figure 4, at upper right), a
simulated computer network is displayed.

The window for simulation management (at the bottom right of figure 4) allows
looking through and changing simulation parameters. It is important that you can see
the events which are valuable for understanding attack and defense mechanisms on a
time scale. The time scale is depicted above windows with the events description.

Corresponding status windows show the current status of agent teams (see the de-
fense team status window at the upper left of figure 4). It is possible to open different
windows which characterize functioning (the statistical data) of particular hosts, pro-
tocols and agents (see these windows at the bottom left of figure 4).

The example of hierarchy of simulated objects is represented in figure 5 (from left
to right there are showed the nested objects “network”, “host”, “agent”). During in-
vestigation one can move from one hierarchy level to another and analyze functioning
parameters of various objects.

 Simulation of Internet DDoS Attacks and Defense 335

Fig. 4. Common representation of the simulation environment

Fig. 5. Example of object hierarchy: “network” → “host” → “agent”

At the basic window of visualization (figure 6), a simulated computer network is
displayed. The network represents a set of hosts and channels. Hosts can fulfill differ-
ent functionality depending on their parameters or a set of internal modules. The
routers are depicted with the sign “ ”. Attack agents are deployed on the hosts
marked with red color. Defense agents are located on the hosts marked with green
color. Above the colored hosts there are strings indicating the corresponding state of
deployed agents. The other hosts are standard hosts that generate normal traffic.

Each network for simulation consists of three types of sub-networks: (1) the sub-
net of defense where the defense team is deployed; (2) the intermediate subnet where
the standard hosts are deployed. They produce the generic traffic including the traffic
to defended host; (3) the subnet of attack where the attack team is deployed.

336 I. Kotenko and A. Ulanov

Fig. 6. Example of computer network for simulation

The subnet of defense as a rule includes at least five hosts. The following agents
are deployed on the first four hosts: detector, sampler, filter and investigator. The
web-server which is under defense is deployed on the fifth host. The agents and the
web-server are the applications installed on corresponding hosts. The IP addresses are
being set automatically. It is necessary to set the other application parameters. Web-
server is deployed on the host d_srv. The interaction port and the answer delay must
be set. Detector is deployed on the host d_det. The following parameters are used for
detector: the defended host IP address, the port for team interaction, the interval for
sensor inquiry, and the maximum allowed data-rate to server (BPS, bit per second).
Sampler is placed on the host d_firewall (on the entrance to the server subnet). Filter
is installed on the host d_r (router). Investigator is deployed on the host d_inv. For
each of the last three agents, the private port, the IP address of detector and the port
for team interaction must be determined.

The intermediate subnet includes N hosts i_cli[…] with generic clients. They are
connected by the router i_r. The number of hosts N is the simulation parameter which
can be set. The following parameters of clients must be specified: IP-address and port
of server, the time of work start, the quantity and size of requests while connecting to
server, the size of reply and the time of reply preparation, the idle interval.

The subnet of attack consists of M hosts i_cli[…] with daemons and one host with
master. The number of hosts M must be set. Master has the following parameters: port
for team interaction, IP-address and port of attack target, the time of start of attack

 Simulation of Internet DDoS Attacks and Defense 337

and its rate (measured in packets per second). Daemon has the following parameters:
the port, masters’ IP-address and port for team interaction.

To simulate the Internet processes (including DDoS defense and attack mecha-
nisms), we needed the models of single hosts and topology as the representation of the
way these hosts are connected. In relevant publications (e.g. [1], [23]) the Internet is
represented as a graph built due some analytical dependencies. One of the main pa-
rameters to build the correct graph is node degree k. It is the amount of nodes with
which the given node is connected. The average node degree is defined by the follow-
ing formulae: k = 2 m / n, where m is the amount of connections, and n is the amount
of nodes in the network.

The network topology which is similar to Internet can be built on the basis of node
degree. The function that can determine k for every node in network is needed. [13]
summarizes the data on investigating this function. The probability density function
(PDF) of node degree is built upon the data from the distributed sensors (“skitters”),
BGP tables and WHOIS [13]. PDF of k for the Internet is similar to the function

() γ−= ckkf , and the values of k are bounded in the following way [5]:
()1/1

min
−≤≤ γkkk .

The graph that represents the network topology is built in the following way [3].
There is chosen the amount of nodes n. It is generated the random value

ik on the ba-

sis of distribution ()f k for every node (the sum of
ik must be even). Then every

node i from the set is connected with the other
ik randomly chosen node. There are

the other ways to build the random graph. The generation due to clustering method
and joint degree distribution are more precise [13]. The basic network that is used for
simulations in the developed environment is built in compliance with described algo-
rithm and PDF (*). The value 25.2=γ is borrowed from [13]. On the basis of ex-

perimental data the minimum node degree is 2.

6 Simulation Scenario Examples

The attack parameters used in the experiments represented in the paper are as follows
(see section 4): Victim type – host (server that provides some service); Attack type –
brute-force; Impact on the victim – disruptive; Attack rate dynamics – constant, vari-
able; Agents’ set permanency – constant, variable; Possibility of exposure – discover-
able filterable attack; Source addresses validity – valid (real), spoofed: random, sub-
net; Degree of automation – semi-automatic with direct communication.

In the experiments considered in the paper the following defense parameters were
used (see section 4): Deployment location – intermediate, defended subnets; Mecha-
nism of cooperation – centralized; Covered defense stages – attack prevention, attack
detection, attack source detection, attack counteraction; Attack detection technique –
anomaly detection (Hop-count Filtering (HCF), Source IP address monitoring
(SIPM), Bit per Second (BPS)); Attack source detection technique – can detect when
source address is not spoofed; Attack prevention technique – packet filtering; Tech-
nique for gathering of model data – learning; Determination of deviation from model

338 I. Kotenko and A. Ulanov

data: thresholds (HCF, BPS), determination of fluctuation in probabilistic traffic pa-
rameter (SIPM).

Learning mode. The main task of learning mode is to create the model of generic
traffic for the given network. The clients send the requests to the server and it replies.
At this time sampler analyses requests and uses them to form the models of normal
traffic and other parameters. During the learning it is possible to watch the change of
traffic models (see figures 7-11).

Figure 7 represents the list of hosts that sent requests to server and hops to them af-
ter 300 seconds of learning and the time of last request. As mentioned above the hop
count is calculated on the basis of TTL packet field.

Figure 8 depicts the change of new addresses amount for sampler during first 300
seconds of learning. One can see that in the beginning when clients requested server
at the first time there were many new addresses (the maximum is 6 addresses, the
time interval is 10 seconds, and the shift is 3 seconds). The last unknown address ap-
peared in the region of 100 first seconds. At least, when all clients have requested the
server there were no new addresses.

Figure 9 shows the list of clients requested the server and considered as legitimate
after first 300 seconds of learning. One can see here that in the interval between 0 and
50 seconds there were many new addresses.

Figure 10 represents the graph of change of maximum BPS (for interval 10 seconds
and shift 3 seconds) after 300 seconds from the beginning of learning. The maximum
value was 1742.4 bit/s and was recorded in the area of 100 seconds. One can see also
the values of BPS for clients that requested server in the current time interval.

Figure 11 depicts the values of transmitted bits for every client that requested
server in the interval of 10 seconds.

Decision making and acting. Simulation scenario is realized on the same configura-
tion as was used during learning. The only difference is that the attack team is en-
gaged. Attack team initial parameters are as follows: target_ip="d_srv" (target of at-
tack is server d_srv); target_port="2001" (target port); t_ddos=300 (time of attack
start); attack_rate=5 (intensity of attack in packets per second); ip_spoofing="no" (no
IP spoofing is used).

Figure 12 represents the graphs of channel throughput (bits/s to seconds) on the en-
trance to the defended network before (dashed line) and after (firm line) filter.

After modeling start the clients begin to send requests to the server and it replies.
This is the way the generation of generic network traffic takes place (figure 12, inter-
val 0 – 300 seconds). The formation of defense team occurs after some time from
start. Investigator, sampler and filter connect to detector and send it the messages that
they are alive and ready to work. Detector stores this information. The attack team is
formed in the same way. Daemons connect to master and report their status. After es-
tablishing the defense team begins to function. Sampler collects traffic data and com-
pares it with the model data acquired during learning mode. The addresses that are the
source of anomalies are sent to detector every n seconds (in this scenario n=60). De-
tector makes the decision about the attack and sends to filter and investigator the ad-
dresses of suspicious hosts.

 Simulation of Internet DDoS Attacks and Defense 339

Fig. 7. List of hosts that sent requests to server and hops to them after 300 sec of learning

Fig. 8. Change of new IP addresses amount Fig. 9. List of clients requested server and con-
sidered as legitimate after 300 sec of learning

Fig. 10. Change of BPS parameter Fig. 11. Values of transmitted bits

After 300 seconds from simulation start the attack team begins attack actions. Mas-
ter examines all daemons that it knows. Then it sends the command of attack to all
workable daemons. This command includes address and port of attack target, intensity
(distributed among daemons) and the method IP spoofing. In this case they are: target
– d_srv, port – 2001, intensity of attack for every daemon (calculated as intensity
divided by the number of daemons) 5/10=0.5, spoofing “no” (no IP spoofing). When

340 I. Kotenko and A. Ulanov

daemons receive the command they begin to send the attack packets (figure 12, time-
stamp 300 seconds).

After a while, sampler determines the suspicious hosts with the use of BPS
method. The BPS parameter of these hosts exceeds normal value. Detector receives
the addresses of these hosts from sampler and sends them to filter and investigator.
Filter sets the filtering rules and the packets from the given hosts begin being dropped
(figure 12, timestamps 400 – 600 seconds, firm graph).

Investigator tries to inspect the given hosts and to defeat the attack agents deployed
there. It succeeds in defeating of four daemons. The string “defeated” appears above
the defeated agent in the window of network structure. However the other daemons
continue the attack (figure 12, after 400 seconds, dashed graph).

Master examines daemons next time 600 seconds after simulation has started. It
does not succeed to connect with all daemons as some of them were defeated by in-
vestigator. Master makes the decision to redistribute the intensity of attack to keep the
overall intensity on the given level. Also it decides to change the method of IP spoof-
ing to complicate the detection and defeating of attack agents by defense team. Master
sends to alive daemons the command: target – d_srv, target port – 2001, intensity –
5/(10–4)=0.83, IP spoofing method – “random”. When daemons receive the command
they continue to send the attack packets having applied the new parameters (figure 12,
timestamp 600 seconds).

Detector sees that the input channel throughput has noticeably lowered since the
traffic from attack team has raised (figure 12, after 600 seconds). Detector does not
receive the anomaly report from sampler though. This is because the method BPS
used by sampler does not work fine when attacker changes the sender address in
every packet. That is the reason detector fails to confront some address with the big
traffic. Therefore detector decides to apply another DDoS defense method – SIPM.
The large amount of new IP addresses for sampler will lead to attack detection and
dropping malicious packets. This method however does not allow tracing the source

Fig. 12. Graphs of channel throughput

 Simulation of Internet DDoS Attacks and Defense 341

of attack directly, and investigator will fail to defeat attack agents. But the attack
packets will be filtered and the traffic in the subnet of defended host will return to
normal state dropped (figure 12, timestamps 400 – 600 seconds, firm graph).

The following effectiveness and efficiency parameters of different defense mecha-
nisms were studied during experiments: rate of dropped legitimate traffic (false posi-
tive rate); rate of admitted attack traffic (false positive rate); attack reaction time.
These parameters were investigated in dependence on the following input parame-
ters: network configuration (the amount of legitimate clients); attack intensity; IP ad-
dress spoofing technique used in attack; internal parameters of defense mechanisms
and their combinations; quantity and distribution of defense teams, etc.

7 Conclusion

The main results of the work we described in the paper consist in developing an ap-
proach to agent-based simulation of defense mechanisms against attacks and imple-
menting the software environment DDoSSim intended for simulation of DDoS attacks
and defense. The goal of the paper is not to present an investigation of new defense
methods, but to show the possibilities of the simulation tool developed. One of the
features of this tool is the possibility to insert new attack and defense methods and in-
vestigate them. The environment developed is written in C++ and OMNeT++. It al-
lows imitating a wide spectrum of real life DDoS attacks and defense mechanisms.

Various experiments with this environment have been fulfilled. These experiments
include the investigation of attack scenarios and protection mechanisms for the
networks with different structures and security policies. One of the scenarios was
demonstrated in the paper. Future work is connected with building more powerful
simulation environment based on large library of DDoS attack and defense mecha-
nisms, investigating new defense mechanisms, and conducting experiments to both
evaluate computer network security of large-scale network security solutions and ana-
lyze the efficiency and effectiveness of different security policies against various at-
tacks. The special attention will be given to cooperative defense mechanisms that are
based on the deployment of defense components in various Internet subnets.

Acknowledgments. The research is supported by grant of Russian Foundation of
Basic Research (№ 04-01-00167), Department for Informational Technologies and
Computation Systems of the Russian Academy of Sciences (contract №3.2/03),
Russian Science Support Foundation and by the EC as part of the POSITIF project
(contract IST-2002-002314).

References

1. CAIDA. http://www.caida.org/tools/
2. Canonico, R., Cotroneo, D., Peluso, L., Romano, S.P., Ventre, G.: Programming routers

to improve network security. Proceedings of the OPENSIG 2001 Workshop Next Genera-
tion Network Programming (2001)

3. Catanzaro, M., Boguñá, M., Pastor-Satorras, R.: Generation of uncorrelated random scale-
free networks. Physical Review E 71, 027103 (2005)

342 I. Kotenko and A. Ulanov

4. Chen, S., Song, Q.: Perimeter-Based Defense against High Bandwidth DDoS Attacks.
IEEE Transactions on Parallel and Distributed Systems, Vol.16, No.7 (2005)

5. Dorogovtsev, S.N., Mendes, J.F.F.: The shortest path to complex networks. http://
arxiv.org/ abs/cond-mat/0404593 (2004)

6. Fan, X., Yen, J.: Modeling and Simulating Human Teamwork Behaviors Using Intelligent
Agents. Journal of Physics of Life Reviews, Vol. 1, No.3 (2004)

7. FIPA. http://www.fipa.org
8. Gil, T.M., Poletto, M.: MULTOPS: a data-structure for bandwidth attack detection. Pro-

ceedings of 10th Usenix Security Symposium (2001)
9. Jin, C., Wang, H, Shin, K.G.: Hop-count filtering: An effective defense against spoofed

DDoS traffic. Proceedings of the 10th ACM Conference on Computer and Communica-
tions Security (2003)

10. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: An architecture for mitigating DDoS at-
tacks. Journal on Selected Areas in Communications, Vol. 21 (2003)

11. Kuznetsov, V., Simkin, A., Sandström, H.: An evaluation of different ip traceback ap-
proaches. Proceeding of the 4th International Conference on Information and Communica-
tions Security (2002)

12. Li, M., Chi, C.H., Zhao, W., Jia, W.J., Long, D.Y.: Decision Analysis of Statistically De-
tecting Distributed Denial-of-Service Flooding Attacks. Int. J. Information Technology and
Decision Making, Vol.2, No.3 (2003)

13. Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., Claffy, K.,
Vahdat, A.: Lessons from Three Views of the Internet Topology: Technical Report. Coop-
erative Association for Internet Data Analysis (CAIDA) (2005)

14. Mahajan, R., Bellovin, S.M., Floyd, S.: Controlling High Bandwidth Aggregates in the
Network. Computer Communications Review, Vol.32, No.3 (2002)

15. Mirkovic, J., Martin, J., Reiher, P.: A Taxonomy of DDoS Attacks and DDoS Defense
Mechanisms, Technical report #020018. University of California, Los Angeles (2002).

16. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service: Attack and
Defense Mechanisms. Prentice Hall PTR (2004)

17. Mirkovic, J., Robinson, M., Reiher, P., Oikonomou, G.: Distributed Defense Against
DDOS Attacks. University of Delaware. Technical Report CIS-TR-2005-02 (2005)

18. OMNeT++ homepage. http://www.omnetpp.org/
19. Papadopoulos, C., Lindell, R., Mehringer, I., Hussain, A., Govindan, R.: Cossack:

Coordinated suppression of simultaneous attacks. Proceedings of DISCEX III (2003)
20. Park, K., Lee, H.: On the Effectiveness of Route-based Packet Filtering For Distributed

DoS Attack Prevention in Power-law Internet. Proceedings ACM SIGCOMM (2001)
21. Peng, T., Christopher, L., Kotagiri, R.: Protection from Distributed Denial of Service Attack

Using History-based IP Filtering. IEEE International Conference on Communications (2003)
22. Peng, T., Leckie, C., Kotagiri, R.: Proactively Detecting DDoS Attack Using Source IP

Address Monitoring, Networking 2004, Athens, Greece (2004)
23. Route-Views Bibliography. http://www.routeviews.org/papers/
24. Tambe, M.: Towards flexible teamwork. Journal of AI Research, Vol.7 (1997)
25. Tambe, M., Pynadath, D.V.: Towards Heterogeneous Agent Teams. Lecture Notes in Arti-

ficial Intelligence, Vol.2086 (2001)
26. Xiang, Y., Zhou, W.: An Active Distributed Defense System to Protect Web Applications

from DDoS Attacks. The Sixth International Conference on Information Integration and
Web Based Application & Services (2004)

27. Xuan, D., Bettati, R., Zhao, W.: A gateway-based defense system for distributed dos attacks
in high-speed networks. IEEE Transactions on Systems, Man, and Cybernetics (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

