
H. Leitold and E. Markatos (Eds.): CMS 2006, LNCS 4237, pp. 216 – 227, 2006.
© IFIP International Federation for Information Processing 2006

Attack Graph Based Evaluation of Network Security

Igor Kotenko and Mikhail Stepashkin

SPIIRAS, 39, 14 Liniya, St.-Petersburg, 199178, Russia
{ivkote, stepashkin}@comsec.spb.ru

Abstract. The perspective directions in evaluating network security are simu-
lating possible malefactor’s actions, building the representation of these actions
as attack graphs (trees, nets), the subsequent checking of various properties of
these graphs, and determining security metrics which can explain possible ways
to increase security level. The paper suggests a new approach to security
evaluation based on comprehensive simulation of malefactor’s actions, con-
struction of attack graphs and computation of different security metrics. The
approach is intended for using both at design and exploitation stages of com-
puter networks. The implemented software system is described, and the exam-
ples of experiments for analysis of network security level are considered.

Keywords: Network security, Vulnerability Assessment, Risk Assessment, Se-
curity Metrics, Network attacks

1 Introduction

The increase of networks and security mechanisms complexity, vulnerabilities and
potential operation errors as well as malefactors’ possibilities causes the necessity to
develop and use powerful automated security analysis techniques. These techniques
should allow revealing possible assault actions, determining vulnerabilities, critical
network resources and security bottlenecks, and finding out and correcting errors in
network configurations and security policies.

At design stages, the different approaches to security analysis can be used, for ex-
ample, based on qualitative and quantitative risk analysis. Approaches based on build-
ing the representation of malefactor’s actions in the form of attack trees or attack
graphs, the subsequent checking of various properties of these trees or graphs on the
basis of usage of different methods (for example, model checking), and determining
various security metrics are the perspective directions in evaluating security level of
large-scaled networks. At exploitation stages, passive and active methods of vulner-
ability assessment are used. The passive methods do not allow estimating the possible
routes of malefactor’s penetration. The active methods can not be applied in all situa-
tions, as lead to operability violation of network services or the system as a whole.
The combination of passive methods (for obtaining appropriate data about network
configuration and security policy), procedures of attack graph construction, and
automatic reasoning allows solving partially these two problems.

The paper is devoted to creating the architecture, models and prototypes of security
analysis system (SAS) based on construction of attack graphs and computation of
different security metrics on the basis of combination of qualitative risk analysis

 Attack Graph Based Evaluation of Network Security 217

techniques. SAS is based on the following functions: simulating malefactor’s activity;
building possible assault actions graph; analyzing malefactors’ actions from different
network points and directed to implementing various security threats; revealing vul-
nerabilities and security “weak places” (the most critical computer network compo-
nents); calculating different security metrics and evaluating general security level;
comparison of retrieved metrics and user requirements and elaboration of recommen-
dations on security increase. The work is organized in the following way. Section 2 is
an overview of relevant works and the suggested approach peculiarities. Section 3
represents the model of attack scenarios and the common attack graph generated. Sec-
tion 4 specifies security metrics and main phases of evaluating a general security
level. Section 5 emphasizes the approach complexity problems and solutions. Sec-
tion 6 considers the generalized architecture of SAS. Section 7 describes the examples
of experiments fulfilled with SAS. Conclusion surveys the results and further
research.

2 Related Work and the Approach Peculiarities

There are a lot of works which consider various approaches to security analysis.
Alberts and Dorofee [1] as well as Chapman and Ward [2] described different risk

analysis techniques for estimating security level. Ritchey and Ammann [14] proposed
model checking technique for network vulnerability analysis. Jha et al. [6] suggested
the technique of attack graph evaluation based on model checking and probabilistic
analysis. Sheyner et al. [16] presented algorithms for generating scenario graphs
based on symbolic and explicit-state model checking. These algorithms ensure pro-
ducing counterexamples for determining safety and liveness properties. Rothmaier
and Krumm [15] suggested an approach for analyzing different attack scenarios based
on a high-level specification language, a translation from this language to constructs
of model checker, applying optimization techniques and model checking for auto-
mated attack scenario analysis.

Lye and Wing [7] suggested the security evaluation method based on game theory.
The authors view the interactions between an attacker and the administrator as a two-
player stochastic game and construct the game model. The approach offered by Singh et
al. in [17] is intended for performing penetration testing of formal models of networked
systems for estimating security metrics. Swiler et al. [18] proposed an approach for con-
struction of attack graph which can identify the attack paths with the highest probability
of success. Hariri [5] described global metrics which can be used to analyze and proac-
tively manage the effects of complex network faults and attacks, and recover accord-
ingly. Rieke [13] offered a methodology and a tool for vulnerability analysis which can
automatically compute attack paths and verify some security properties. Dantu et al. [4]
proposed an approach to estimate the risk level of critical network resources using
behavior based attack graphs and Bayesian technique. Ou et al. [12] suggested a logic
programming approach to automatically fulfill network vulnerability analysis. Noel and
Jajodia [8] considered the common approach, attack graph visualization techniques and
the tool for topological vulnerability analysis. Ning et al. [10] suggested different tech-
niques to construct high-level attack scenarios.

218 I. Kotenko and M. Stepashkin

The paper suggests a new approach to security evaluation based on comprehensive
simulation of malefactor’s actions, construction of attack graphs and computation of
different security metrics. The main differences of offered approach from examined
ones consist in the way of modeling assault actions (we use a multi-level model of at-
tack scenarios) and applying constructed attack graphs (for different locations of
malefactors) to determine a family of security metrics and to evaluate different secu-
rity properties. While the first feature has been taken into account partly in previous
works, the second one mainly has not been considered. The third peculiarity of of-
fered approach is that it can be used at different stages of computer network life cycle,
including design and exploitation stages. At design stage, the Security Analysis Sys-
tem (SAS) founded on this approach should use the given specifications of computer
network and security policy. At exploitation stage, it interacts with a real computer
network getting the necessary configuration and policy data in passive mode. The re-
sults of security analysis are vulnerabilities detected, attacks routes (graphs), network
bottlenecks, security metrics, which can be used for general security level evaluation
of network and its components. Obtained results allow producing the valid recom-
mendations for eliminating detected vulnerabilities and bottlenecks, as well as
strengthening the network security level.

3 Attack Scenarios and Generalized Attack Graph

Generalized attack scenario model is hierarchical and contains three levels: integrated
level, script level and action level. The integrated level determines high-level pur-
poses of the security analysis directed to main security threats realization and ana-
lyzed objects (particular hosts, network fragments or the whole network). Integrated
level allows coordinating of several scenarios. These scenarios may be performed by
both one malefactor and malefactors group. The script level takes into account male-
factor’s skill and initial knowledge about network, defines attack object and purpose
(for example, “host OS determining”, “denial of service”, etc.). Script level contains a
set of script stages and substages. The main stages are reconnaissance, penetration
(initial access to the host), privileges escalation, threat realization, traces hiding,
backdoors creation. The action level describes low-level malefactor’s actions and
exploits.

The algorithm of generating the common attack graph is intended for building the
attack graph which describes all possible routes of attack actions in view of malefac-
tor’s initial position, skill level, network configuration and used security policy. The
algorithm is based on the action sequence set in the attack scenarios model: actions
which are intended for malefactor’s movement from one host onto another; reconnais-
sance actions for detection of “live” hosts; reconnaissance actions for detected hosts;
attack actions based on vulnerabilities and actions of ordinary users.

All objects of general attack graph are divided into two groups: base (elementary)
objects and combined objects. Base objects define the graph vertexes. They are linked
by edges for forming the different sequences of malefactor’s actions. Combined ob-
jects are built on the basis of linking the elementary objects by arcs. Objects of types
“host” and “attack action” are base (elementary) objects. Objects of the types “route”,
“threat” and “graph” are combined objects. Route of attack is a collection of linked

 Attack Graph Based Evaluation of Network Security 219

vertexes of general attack graph (hosts and attack actions), first of which represents a
host (initial malefactor’s position) and last has no outgoing arcs. Threat is a set of
various attack routes having identical initial and final vertexes. Classification of at-
tack actions allows differentiating threats as primary threats (confidentiality, integrity
and availability violation) and additional threats (gaining information about host or
network, gaining privileges of local user or administrator).

4 Security Level Evaluation

Determining each security metric and the general security level of analyzed network
can be realized in different ways. We use two approaches for security level evalua-
tion: Qualitative express assessment on basis of qualitative methodologies of risk
analysis; Quantitative computation of network security level (on basis of Bayesian
networks, possibility theory and fuzzy sets). This paper presents the first approach.

The set of security metrics was constructed on basis of general attack graph. Secu-
rity metrics describe security of both base objects and complex objects of general at-
tack graph. Examples of security metrics are as follows: (1) Metrics based on network
configuration (Quantity of hosts, firewalls, Linux hosts, Microsoft Windows hosts,
hosts with antivirus software installed, hosts with personal firewalls, hosts with host-
based intrusion detection systems, etc.); (2) Metrics of hosts (Criticality level, etc.);
(3) Metrics of attack actions (Criticality level; Damage level; Access complexity;
Base Score; Confidentiality Impact; Availability Impact; Access Complexity, etc.);
(4) Metrics of attack routes (Route length expressed in vulnerable hosts; Route aver-
age Base Score; Maximum Access Complexity; Damage level of route; Maximum
damage level of route, etc.); (5) Metrics of threats (Minimum and maximum quantity
of different vulnerable hosts used for threat realization; Quantity of different routes
which lead to threat realization; Damage level of threat; Maximum damage level of
threat; Access Complexity of threat; Admissibility of threat realization; Risk level of
threat, etc.); (6) Metrics of common attack graph (Quantity of different vulnerable
hosts of graph; Quantity and set of different attack actions, Average Base Score of all
different attack actions, Quantity of routes leading to confidentiality, integrity, avail-
ability violations, Quantity of treats leading to confidentiality, integrity, availability
violations, Integral security metric “Security level”, etc.).

Some security metrics are calculated on basis of standard Common Vulnerability
Scoring System [3]. CVSS metrics are divided into three main groups: Base indexes
define criticality of vulnerability (attack action realizing given vulnerability); Tempo-
ral indexes – urgency of the vulnerability at the given point of time; Environmental
indexes should be used by organizations for priorities arrangement at time of generat-
ing plans of vulnerabilities elimination.

The offered approach of qualitative express assessment of network security level
contains the following stages: (1) Calculating the criticality level of hosts (Critical-
ity(h), ∀h∈[1,NH], NH − hosts amount) using three-level scale (High, Medium, Low);
(2) Estimating the criticality level of attack actions (Severity(a), ∀a∈[1,NA], NA − ac-
tions amount) using the CVSS algorithm of action criticality assessment;
(3) Calculating the damage level of attack actions (Mortality(a,h), ∀h∈[1,NH],
∀a∈[1,NA]) taking into account criticality levels of actions and hosts; (4) Determining

220 I. Kotenko and M. Stepashkin

the damage level of all threats (Mortality(T)=Mortality(aT,hT), ∀T∈[1,NT], where
NT − threats amount, aT − latest attack action directed on the host hT for threat T);
(5) Calculating the metrics of “Access complexity” for all attack actions (AccessCom-
plexity(a), ∀a∈[1,NA]), all routes (AccessComplexity(S), ∀S∈[1,NS], NS − routes
amount), and all threats (AccessComplexity(T), ∀T∈[1,NT]); (6) Estimating the admis-
sibility of threats realization (Realization(T), ∀T∈[1,NT]) using the metrics of “Access
complexity”; (7) Network security level (SecurityLevel) evaluation using the estima-
tions of threats admissibility and damage level caused by threats realization. Four se-
curity levels are used: Green, Yellow, Orange and Red.

5 Complexity Problems and Solutions

The complexity of generating the attack graph is determined by the quantity of male-
factor's actions. The given quantity depends mainly on the quantity of hosts in ana-
lyzed network (NH) and the quantity of used vulnerabilities (exploits) from the inter-
nal database of vulnerabilities (NV).

Let us consider the test network which includes n hosts. Each of these hosts has
vulnerabilities allowing malefactor to gain a root privileges on the host and to move
to the compromised host to attack others. During scanning process the malefactor can
reveal all n hosts and realize all attack actions and movements to the captured hosts.
Therefore the following formula can be used to approximately compute the complex-
ity of generating the attack graph:

() () () (), 1, 1 2, !HN
H V H V H V H V H V H V V HF N N N N F N N N N N N F N N N N= − = − − =

The complexity of attack graph analysis is determined by the complexity of attack
graph depth-first traversal and is equal to O(V + E), where V − graph vertexes; E −
graph edges.

This discussion shows that the given approach faces a combinatorial explosion in
complexity. So, it can be applied with success to small networks, but cannot be used
without corresponding modification for large scaled networks.

The following approaches for reducing the complexity of generating the attack
graph are suggested:

1. Splitting the network into fragments, parallel computing for each fragment with
subsequent combination of results.

2. Aggregation and abstraction of representations of attack actions and (or) net-
work objects:

 Using attack actions. The type of aggregation or abstraction is selected ac-
cording to offered generalized attack scenario model. The examples of attack
actions aggregation objects are as follows: main stages (reconnaissance, pene-
tration, privileges escalation, etc.), attack class (buffer overflow, DoS, etc.),
attack subclass (for example, specific type of buffer overflow). Thus, at attack
graph construction it is possible to merge a set of vertexes representing ac-
tions of one type in one vertex (for example, actions “ping”, “get banners”,
“get services” can be merged into a set of actions named “reconnaissance”).

 Using network objects. The combination of several hosts of network segment,
network segment, the combination of network segments can be aggregated

 Attack Graph Based Evaluation of Network Security 221

network objects. Thus, the analyzed network can be splitted into aggregated
objects which are represented as one object. Such object can be characterized
by a set of parameters inherent to all its components (hosts, routers, network
switches). The list of operating systems types, the list of network services,
etc. can be used as elements of such set of parameters. The reduction of attack
graph complexity in such case is achieved because instead of a big set of ver-
texes (where the hosts are targets of attack actions), the significantly smaller
set of vertexes (where the aggregated objects are targets of attack actions) are
displayed on the graph.

 Combining various approaches to aggregation and abstraction.
3. Combining parallel computing, aggregation and abstracting.

In further work the development of various algorithms for generating the attack
graph is supposed. These algorithms will differ by accuracy and complexity.

6 Security Analysis System Architecture

The architecture of Security Analysis System (SAS) is depicted in fig.1.
User interface provides the user with ability to control all components of SAS, set

the input data, inspect reports, etc. Generator of network and security policy internal
model converts the information about network configuration and security policy into
internal representation. The input information is received from Information collector
(at exploitation stage) or from specifications expressed in System Description Lan-
guage (SDL) and Security Policy Language (SPL) (at design stage). These specifica-
tions should describe network components and security with the necessary degree of
detail – the used software (in the form of names and versions) should be set. Data
controller is used for detection of incorrect or undefined data.

The network configuration and security policy database contains information on
network configuration and security policy rules (this part is used for generating attack
action results) as well as malefactor’s view of network and security policy (it is gen-
erated as the results of attack actions). It is possible to plan the sequence of malefac-
tor’s actions on basis of this database (for example, if malefactor has user privileges
and needs to read a file F, and according to security policy only local administrators
can read this file, then malefactor must do actions to gain the administrator
privileges).

Actions database includes the rules of “IF-THEN” type determining different
malefactor’s operations. IF-part of each rule contains action goal and (or) conditions.
The condition is compared with the data from network configuration and security pol-
icy database. THEN-part contains the name of action which can be applied and (or)
the link on exploit and post-condition which determines a change of network state
(impact on an attacked object). Actions which use vulnerabilities (unlike other bases
of the given group) are constructed automatically on basis of external vulnerabilities
database OSVDB [11]. Common actions contain actions which are executed accord-
ing to user’s privileges (for example, “file read”, “file copy”, “file delete”, etc.). Da-
tabases of reconnaissance and common actions are created by experts.

222 I. Kotenko and M. Stepashkin

Security Analysis System

External
database of

vulnerabilities

A
N
A
L
Y
Z
E
D

N
E
T
W
O
R
K

Information
collector

Network
interface

Data
repository
modifier

Data Repository

Security level
Evaluator

User interface

Attack graph
generator

 Network
configuration Actions

which use
vulnerabilities

Reconnaissance
actions

Host agent
1

Host agent
2

Host agent
3

Host agent
4

...

Generator of
network and

security policy
internal model

Report
generator

Network
configuration
specification

Security policy
specification

Parameters ReportsRequirements

Network and security policy Actions

Malefactor ‘s view of
network configuration

Common actions
of ordinary users

Malefactor’s
model

Requirements
for security level

Software
names

Additional databases

Data
controller

 Security
policy

Malefactor’s view of
security policy

Fig. 1. Architecture of security analysis system

DB of requirements contains the predefined sets of security metrics values (set by
experts). Each set corresponds to the certain security class regulated by international
standards or other normative documents. The database of software names is used by
Data controller for detection of errors in the specifications of computer network (e.g.
when user writes “Orakle” instead of “Oracle”) and for generating recommendations
on using software tools. In case of detecting discrepancy the conflict is resolved by
choosing the correct software name from the list suggested.

Data repository modifier downloads the open vulnerability databases (we use
OSVDB [11]) and translates them into actions database. Attack graph generator
builds attack graph by modeling malefactor’s actions using information about net-
work configuration, security policy and available actions from data repository. This
module sets up security metrics of elementary objects. On basis of these metrics Secu-
rity level evaluator calculates the metrics of combined objects, evaluates security
level, compares obtained results with requirements, finds bottlenecks, and generates
recommendations on strengthening security level. Malefactor’s model determines
malefactor’s skill level, his initial position and knowledge on network. Malefactor’s
skill level determines the attack strategy and the set of actions used by malefactor.

Hosts agents serve for passive data gathering. On the basis of these data the net-
work and security policy internal model is formed at exploitation stage. For example,
the agents can make the analysis of configuration files of operating system and other
software components. Network interface provides interaction with external environ-
ment (sending requests to external vulnerabilities databases for updates and commu-
nicating with agents). Information collector interacts with host agents and receives
from them information about network devices and settings of software components.

 Attack Graph Based Evaluation of Network Security 223

7 Experiments

Fig. 2 shows the structure of test computer network used in experiments.

Fig. 2. Structure of test network

When user is working with SAS, he needs to perform the following operations:
(1) Loading network configuration and security policy; (2) Setting security require-
ments; (3) Choosing the high-level purpose of security analysis process; (4) Setting
the values of parameters of security analysis; (5) Security analysis process;
(6) Modification of network configuration and security policy (if needed).

Network specification in specialized language (SDL) allows defining network to-
pology, information about operating systems of the network hosts, TCP/IP protocol
stack settings, services, etc. Security policy description in the specialized language
(PDL) allows specifying the network traffic filtration rules for boundary hosts, confi-
dence relations, authentication and authorization rules, etc. Network traffic filtration
rules are specified as table collection [9]. Port forwarding rules are specified by tables
PREROUTING and FORWARD (all incoming connections not described in the table
are forbidden). Table 1 contains notation for the main elements of attack graph.

Table 1. Attack graph elements notation

Malefactor

action
Malefactor action (severity and access
complexity of action are in brackets)

Malefactor location
PRIVILEGES

Malefactor’s location and
privileges

Final malefactor
action Final malefactor’s action Attacked host

(criticality)

Attacked host and its criti-
cality level (in brackets)

Let us consider how SAS works at design stage. Let input data for security analysis

are as follows: (1) port forwarding rules for host Firewall_1 are in Table 2;
(3) Firewall_1 and Firewall_2 trust to all DMZ hosts; (4) malefactor is located at

224 I. Kotenko and M. Stepashkin

external network at host Malefactor, and has administrator privileges; (5) security
analysis purpose is to analyze all kinds of threats (integrity, availability, confidential-
ity violation); (6) security analysis task is to analyze all DMZ and LAN hosts;
(7) requirements to analyzed network: the given network should have security level
better than Orange. Fig. 3 shows general attack graph for example 1.

Let us consider shortly the process of building the attack graph. At first malefactor
is located at the “Malefactor” host and performs ‘Ping Hosts” attack. The attack al-
lows him to determine live hosts. Malefactor receives data about four hosts
(FTP_server, Web_server, Mail_server and Firewall_1) with IP 195.19.200.1-4 (actu-
ally this is only Firewall_1, but malefactor does not know it). Then malefactor ana-
lyzes every host separately. Let us consider analysis of the host with IP 195.19.200.2.
Four reconnaissance scripts are generated: (1) “Nmap serv” (open port scanning);
(2) “Nmap OS” (OS type and version determining); (3) “Nmap serv”+“Banner” (open
ports scanning and services identifying); (4) “Nmap serv” +”Banner” +”Nmap OS”.
After every reconnaissance script realization, malefactor checks if host information
satisfies the conditions of actions that use vulnerabilities.

Table 2. Port forwarding rules for host Firewall_1

Destination Forward to… Comment
IP Port IP Port

Web_server 195.19.200.3 80 192.168.0.12 80
FTP_server 195.19.200.2 21 192.168.0.11 21
MAIL_server POP3 195.19.200.4 110 192.168.0.10 110
MAIL_server SMTP 195.19.200.4 25 192.168.0.10 25
MAIL_server RDC 195.19.200.4 3389 192.168.0.10 3389

The result of the “Nmap serv” action for host with IP 195.19.200.2 is open port list
for FTP_server host (there is one open port – 21), since in accordance to port forward-
ing table incoming connections to IP 195.19.200.2:21 (where 21 is destination port)
are forwarded into 192.168.0.11:21. Thus malefactor determines availability of one
open port and he can attack it with “SYN flood” assault action. After performing sec-
ond reconnaissance script (“Nmap OS”), malefactor receives information that does
not allow to perform any assault action. After performing third reconnaissance script,
malefactor can use three assault actions: (1) password searching (“FTP dict”);
(2) denial of service attack (“ServU-MKD”); (3) privileges escalating (“ServU-
MDTM”). First two actions are final. Third action allows malefactor to get adminis-
trator privileges and all FTP_server host information. Administrator privileges allows
malefactor to go into the host and to attack other hosts.

Malefactor finds out that real FTP_server host IP (192.168.0.11) does not coincide
with 195.19.200.2. Therefore, there is port forwarding in the network, and malefactor
is at other subnetwork. This fact is critical to malefactor when he decides to change
his location to the captured FTP_server host. Malefactor changes location and per-
forms “Ping Hosts” action. He finds out that there are four hosts and consequently
analyzes them with above-mentioned scheme. In addition he can get administrator
privileges at hosts Firewall_1 and Firewall_2 because they trust to FTP_server.

 Attack Graph Based Evaluation of Network Security 225

Fig. 3. General attack graph

Some of the security analysis results are as follows: Network bottlenecks – Fire-
wall_1, FTP_server, … ; Critical vulnerabilities – NTP_LINUX_ROOT, Serv-U
MDTM, … ; Graph has routes and threats with high mortality (for example, route
Malefactor-Ping-FTP_server(Nobody)-Nmap serv-Banner-ServU MDTM-
FTP_server(Root) …); SecurityLevel=Red. The computer network security level
does not satisfy user’s requirements (better than Orange) and requires immediate ac-
tions for eliminating of the revealed software vulnerabilities and security policy
bottlenecks.

226 I. Kotenko and M. Stepashkin

8 Conclusion

The paper offered the approach and software tool for vulnerability analysis and secu-
rity level assessment of computer networks, intended for implementation at various
stages of a life cycle of computer networks. Offered approach is based on construc-
tion of attack graphs and computation of different security metrics.

The suggested approach possesses the following peculiarities:

 Usage for security level evaluation of integrated family of different models
based on expert knowledge, including malefactor’s models, multilevel models
of attack scenarios, building common attack graph, security metrics computa-
tion and security level evaluation;

 Taking into account diversity of malefactor’s positions, intentions and experi-
ence levels;

 Usage (during construction of common attack graph) not only of the parame-
ters of computer network configuration, but the rules of security policy used;
possibility of estimating the influence of different configuration and policy
data on the security level value;

 Taking into account not only attack actions (which use vulnerabilities), but
the common actions of legitimate users and reconnaissance actions which can
be realized by malefactor when he gains certain privileges on compromised
hosts;

 Possibility of investigating various threats for different network resources;
 Possibility of detection of “weak places” (for example, the hosts responsible

for a lot of attack routes and the highest quantity of vulnerabilities);
 Possibility of querying the system in the “what-if” way, for example, how the

general security level will change if the certain parameter of network configu-
ration or security policy is changed or information about new vulnerability is
added;

 Usage for attack graph construction of updated vulnerabilities databases (the
Open Source Vulnerability Database (OSVDB) [11] is used);

 The “CVSS. Common Vulnerability Scoring System” [3] approach is used for
computation of a part of primary security metrics.

The future research will be devoted to improving the models of computer attacks,
the algorithms of attack graph generation and security level evaluation differing by
accuracy and complexity, and experimental assessment of offered approach.

Acknowledgments. The research is supported by grant of Russian Foundation of Ba-
sic Research (№ 04-01-00167), Department for Informational Technologies and
Computation Systems of the Russian Academy of Sciences (contract №3.2/03), Rus-
sian Science Support Foundation and by the EC as part of the POSITIF project (con-
tract IST-2002-002314). Authors would like to thank the reviewers for their valuable
comments to improve the quality of the paper.

 Attack Graph Based Evaluation of Network Security 227

References

1. Alberts, C., Dorofee, A.: Managing Information Security Risks: The OCTAVE Approach.
Addison Wesley (2002)

2. Chapman, C., Ward, S.: Project Risk Management: processes, techniques and insights.
Chichester, John Wiley (2003)

3. CVSS. Common Vulnerability Scoring System. URL: http://www.first.org/cvss/
4. Dantu, R., Loper, K., Kolan P.: Risk Management using Behavior based Attack Graphs.

International Conference on Information Technology: Coding and Computing (2004)
5. Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., Raghavendra, C. S.: Impact Analy-

sis of Faults and Attacks in Large-Scale Networks. IEEE Security&Privacy, Septem-
ber/October (2003)

6. Jha, S., Sheyner, O., Wing, J.: Minimization and reliability analysis of attack graphs.
Technical Report CMU-CS-02-109, Carnegie Mellon University (2002)

7. Lye, K., Wing, J.: Game Strategies in Network Security. International Journal of Informa-
tion Security, February (2005)

8. Noel, S., Jajodia, S.: Understanding complex network attack graphs through clustered ad-
jacency matrices. Proc. 21st Annual Computer Security Conference (ACSAC) (2005)

9. Netfilter/iptables documentation. URL: http://www.netfilter.org/documentation/
10. Ning, P., Cui, Y., Reeves, D, Xu, D.: Tools and Techniques for Analyzing Intrusion

Alerts. ACM Transactions on Information and System Security, Vol. 7, No. 2 (2004)
11. OSVDB: The Open Source Vulnerability Database. URL: http://www.osvdb.org/
12. Ou, X., Govindavajhala, S., Appel, A.W. : MulVAL: A Logic-based Network Security

Analyzer. 14th Usenix Security Symposium (2005)
13. Rieke, R.: Tool based formal Modelling, Analysis and Visualisation of Enterprise Network

Vulnerabilities utilising Attack Graph Exploration. EICAR 2004 (2004)
14. Ritchey, R. W., Ammann, P.: Using model checking to analyze network vulnerabilities. Pro-

ceedings of IEEE Computer Society Symposium on Security and Privacy (2000)
15. Rothmaier, G., Krumm, H.: A Framework Based Approach for Formal Modeling and

Analysis of Multi-level Attacks in Computer Networks. LNCS, Vol.3731 (2005)
16. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and

analysis of attack graphs. Proc. of the IEEE Symposium on Security and Privacy (2002)
17. Singh, S., Lyons, J., Nicol, D.M.: Fast Model-based Penetration Testing. Proceedings of

the 2004 Winter Simulation Conference (2004)
18. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool.

DISCEX '01 (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

