
Scenarios Knowledge Base: A Framework for
Proactive Coordination of Coalition Operations

Vladimir Gorodetsky and Igor Kotenko

St. Petersburg Institute for informatics and Automation
{gor,� ivkote}@mail.iias.spb.su�

Abstract. The paper objective is to present a new formal framework for
specification of scenario knowledge bases supporting coalition
operation dynamic planning, execution and coordination. It is based on
formal grammar framework represented is matrix form enriched by
attribute component and use of substitution operation allowing
hierarchical specification of the scenario world. The proposed
framework is demonstrated by a case study dealing with coordinated
multi-step attack against computer network performed by hackers.

1 Introduction

Interaction of coalitions involved in a joint operation possesses certain
peculiarities noticeably influencing on the coordination strategy of joint behavior to
achieve an operation objective. In this application, each coalition has its own semi-
autonomous intents, scenarios to achieve these intents, particular resources and
constraints. The intents of different coalitions are usually weakly coupled and
coordination of their behavior is mostly needed to transform jointly the hostile and
unpredictable environment to the state allowing for the coalitions achieving their
intermediate and ultimate goals. In the most cases this assumes partial ordering of
coalition activities. Other peculiarity is that the coalition goals both intermediate and
ultimate, can be achieved by use of multiple and flexible scenarios. Moreover,
coalition intents can change depending on both evolution of intents of operation as a
whole and state and response of environment leading to modification of scenarios and
coordination.

Multi-agent system theory, which is now considered as a basis for coalition
operation modeling, simulation and control, the protocol is assumed as the main mean
of collective behavior coordination. However, the nature and peculiarities of coalition
operations practically exclude use of protocol as coordination framework because as a
rule coalitions are weakly coupled entities, which need some kind of "soft"
coordination. Indeed, coalitions behavior is much more complex, sophisticated and
less deterministic, what makes it difficult to coordinate coalition behavior by use of a
protocol. Coordination mode here has to leave to the coalitions much more flexibility
in both selection of a concrete scenario leading to joint intent achievement and real-
time scheduling of the scenario execution. As a rule, coalition operations are executed
in hostile environment with certain degree of unpredictability. Due to these
circumstances, coalitions are not able to in advance select scenario leading to a
predetermined intermediate or ultimate goal. This means that coalition behavior
scenario has to be dynamically constructed in real-time and step-by-step modes with
feedback from environment and other coalitions.

The task of coalition coordination is better match problem statement peculiar to

traditionally considered in BDI (Belief-Desire-Intention) approach. However, to
practically use this approach, it is necessary to provide each entity (agent, coalition)
with sophisticated knowledge bases, trustworthy and predictive knowledge about
environment and other entities acting in common environment, and also powerful and
efficient reasoning mechanisms. As a rule, modal and temporal extensions of the first
order logic used in BDI approaches, although possessing the needed expressive power
for knowledge and believes representation, do not propose computationally efficient
reasoning mechanisms ([2], [6], [9], etc.). Perhaps, this kind of frameworks has
certain perspective but not in the nearest future.

This paper introduces a formal framework for specification of scenario knowledge
bases integrated with an efficient reasoning mechanism. The basic ideas of this
framework were firstly proposed in [8] and then developed in [4]. The framework is
based on use of a special representation form of the Context Free (CF) grammars ([1],
[7]) enriched by attribute component. Under some assumptions and simplifications,
within the class of application in question, the framework allows for different
coalitions to dynamically (step-by-step) construct coordinated scenarios of their joint
behavior depending on their current intents, coalition states achieved and response
from the potentially hostile and/or unpredictable environment. The main assumption
adopted is that the set of activities used in different scenarios are partially ordered and
coordination is mainly destined to meet partial order relation imposed on the different
coalition actions. In other words, a coalition can perform certain action if and only if
certain intermediate or/and ultimate goals of other coalitions have already been
achieved. Though the framework possesses certain limitations1 of expressiveness of
scenario representation language, it allows efficient solving a broad range of tasks of
dynamic evolving and coordination of joint coalitions behaviors. However, due to the
fact that coalition operations, along with computer support, are directed and managed
by human intellects with a lot of shared non-formalized contexts and knowledge,
coordination within coalition operations needs much less expressiveness of the formal
framework specifying this kind of coordination as compared with the case if such
coordination is performed within agents community, which shared knowledge and
context are much poorer.

The rest of the paper is organized as follows. Section 2 introduces the basic
components of scenario knowledge base and structure given over them at conceptual
level. In section 3 the introduced conceptual model is demonstrated by example for an
application dealing with coordinated distributed attacks of hackers against computer
network. In section 4 scenario knowledge base formal specification language using
the introduced framework is presented. Section 5 outlines the general idea of
reasoning mechanism destined for dynamic inference of coalitions coordinated
scenarios in proactive manner and demonstrates this mechanism by example
Conclusion discusses the proposed framework and future works.

2. Basic Components of Scenario Knowledge Base Model

To be capable to dynamically compute scenarios, all the coalitions have to possess
knowledge and beliefs that allow them to realize goal–directed (proactive) behavior
taking into account constraints, limited resources and opposition of the environment.

1 Like any other formal framework

Specification of the coalition knowledge and believes is made in terms of scenario

knowledge introduced below. Scenario knowledge represents formally the set of
admissible sequences of actions of coalitions participating in joint operation. This
knowledge, while represented formally, is used for dynamic inference of admissible
course of coalitions coordinated actions driven by current state of scenario knowledge
base, goals achieved and response of the environment. Scenario knowledge is
specified in terms of the following basic hierarchically ordered notions: Simple
Behavior model, Behavior Model, Scenario Knowledge base and Mechanism of
Dynamic Scenario Inference. Let us introduce these notions.

2.1 Simple behavior model

Conceptually, Simple Behavior Model (SBM) comprises a set of input { }X i
n

1i= ,

activity (transformation operator) B , precondition C(B) and output Y . Input and
output are also called below as "goals" or "variables". In particular applications input
and output can be interpreted differently and can be represented by particular data
structures. As applied to coalition operations, a variable is interpreted as a goal
achieved or to be achieved. Its identifier denotes both a goal and associated data
structure representing the goal specification. The latter contains special binary
attribute indicating the status of the goal (achieved or not achieved). The examples of
coalition goals are to achieve certain geographical position (data structure specifies
the coalition resources at given time), to obtain certain information about
environment, readiness of a hospital to acceptance of victims, etc.

Activity (transformation) is interpreted as an atomic step of coalition operation
destined for achievement of a new goal. It is associated with the expenditure of
resources and time. Examples are the process of a hospital deployment, a negotiation
process, hackers' attack in progress, etc. Each activity is assigned a type,
Type(B) },{ SSAct∈ . If it is completely defined how to execute an activity, it is

assigned the type Act having sense of atomic behavior. If an activity may be executed
according to multiple scenarios and choice is to made dynamically it is assigned type
SS ("Sub–Scenario"). The latter assumes that the respective action is multi–step and
also is the subject of choice. For example, if an action represents a joint coalition
activity that action of type SS represents activities of a coalition. Thus, activity of
type Act is defined completely, whereas one of type SS corresponds to, possibly, a set
of sub–scenarios. It is worthy to note that use of activities of type SS allows
hierarchical specification of scenario knowledge. This aspect is explained below.

Precondition C(B) of activity B specifies conditions
under whose the activity may be executed. The examples
of preconditions are certain weather or day period when
activity is to be executed for potential its success
(photography is to be done at summer time). Within a
case study considered below, for potential success of
certain attacks against computer network preconditions
can be such as "Network firewall (host) passes through udp-
packets " or "Linux platform is installed". In other words,
preconditions represent constraints that are mostly out of
a coalition control. As a rule, preconditions represent
unavailable information about environment. For example,
if hacker does not know what kind of operating system is

1i
X

1i
X

1i
X

Fig.1. Graphical
explanation of Simple

Behavior Model

kB

jY

C(kB)

installed in the host subjected an attack, and he performs an attack that is effective if
only OS Widows NT is installed in the host, then in case the OS Linux is actually
installed in it, the attack is fail.1. Thus, formally SBM is a four–tuple

SBM = >< = YBCBX n
ii),(,,}{ 1 , (1)

i.e. <inputs, activity, preconditions, output>, where inputs correspond to the goals
that have already been achieved, whereas output is the goal coalition aims to achieve.
Fig.1 demonstrates the notion of SBM graphically.

The union of inputs { }Xi
n

1i= , output Y are below called as informational
component of SBM whereas precondition C and activity B –its behavioral component.

2.2 Behavior Model
Behavior Model (BM) is defined as a structured set of SBMs. BM can represent

scenario knowledge of coalitions concerning, for instance, particular coalition
operation. As a rule, coalition operation can be developing due to different scenarios
aiming at the same ultimate goals (intents). On the other hand, coalitions can
participate in different joint operations with various initial states and ultimate goals.
Thus, if coalitions can execute N joint operations2 then coalition scenario knowledge
are composed of N behavior models BMk , k=1,...,N, such that BMk = rs

rrSBM 1}{ =
with given structure over the last set. Let us introduce this structure.

It is given by two relations between so called behavioral and informational
components of the set rs

rrSBM 1}{ = ant that:
–Behavioral component of BMk , k=1,...,N, is defined as union of behavioral

components of rs
rrSBM 1}{ = composing BMk . Let us denote it as kB .

–Informational component of BMk , k=1,...,N, is defined as union of informational
components constituting behavior model BM k . Let us denote it as kX . It
includes the complete set of coalition operation goals and data structures
associated with them.

Let us outline how SBMs are structured within BMk . This structure is determined
by two relations. The first of them, immediate successor relation U BX is given over
pairs of Cartesian production kB × kX . In it, for every activity B∈ kB the

immediate successor is one and only one element of the informational component kX

of BMk which is conceptually interpreted as the goal of an activity B. The second

relation, immediate predecessor relation, VXB , is defined over the Cartesian

production kX × kB . In it, every pair >< ji B,X is interpreted as “variable X i is

an input of activity B j ”.

1 Sometimes it is ambiguous whether certain entity is to be qualified as variable or as

precondition. A decision mainly depends on the task context.
2 In different operations, coalitions can use the identical activities represented by the same

SBMs. But in different operations the identical SBMs can be structured in various ways. An
analogy with Kripke model of possible worlds could be here pertinent.

Thus, behavior model BMk is defined as four–tuple

BM k = { } { } >< XBBXiikj V,U,X,B , (2)

2.3 Scenario Knowledge Base
The last important notion of scenario knowledge of coalitions is substitution

operation. The necessity to use this operation is caused by the fact that behavioral
component of BMk can contain activities of two types, Act and SS , at that activity
of type SS does not determine any particular procedure but only refers to a scenario
specifying it in terms of particular activities, possibly, of both types Actand SS .

Let SBM= >< = Y,B,}X{ n
1ii and BMk = { } { } >< = ZBBZ

R
1iikj V,U,Z,B – a

Behavior Model, SBM∈ BM k . Substitution of an activity of type SS in SBM by an
activity of type Act or by the name of other BM is called substitution operation.
Such an operation either concretize activity of type SS , or represents it in terms of a
new behavior model BM∈ }{ kBM , which is a scenario. Thus, substitution operation
extends the scenario model via allowing for specification of scenario hierarchy.

Scenario Knowledge Base (SKB) of Coalition operation is defined as the set of
behavior models (3) with the given set of substitution operations. Let us note that this
definition determines composition, destinations and structure of SKB conceptually.
Its formal specification language is considered later in section 4.

2.4 Coalition Operation State

An important notion associated with coalition operation specification is its state.
State of a Coalition Operation at a given time is defined as the set of goals achieved
by its coalitions to the given time. In the same way the State of a Coalition is defined.
If to compare notion of "Knowledge base" and above introduced notion "Scenario
Knowledge Base", it can be mentioned that the notion "goals achieved" in the last
case is analogical to the notion "facts" in the former one and the "state of a coalition
operation" is an analogy of the "set of all the facts" (input and inferred).

However, the state of a coalition (coalition operation) represents not only current
coalition knowledge about its own status, but also its updated believes about
environment. Together with current state of SKB (see below what it is) state of
coalition (coalition operation) completely determines coalition current state of
knowledge about itself and about environment.
The introduced conceptual model of SKB is explained in the next section by the

developed case study from computer security domain.

3 Case Study: Scenario Knowledge Base of Hackers

Let us consider an example representing a fragment of the SKB of hackers
realizing distributed coordinated attack against computer network. It is assumed that
this SKB is used by hackers to dynamically form the scenario of joint attack. The
necessity to use dynamic design of scenario is caused by the fact that each next step
of hackers depends on the reaction of the "counterparty" on the previously
implemented steps.

The Tables 1, 2 and 3 introduce the terminology used in the SKB description and

denotations of particular entities specifying scenario knowledge. In particular, Tab.1
presents the list of identifiers of input and output variables (intermediate and ultimate
goals). Tab.2 presents the list of attack identifiers and minimal explanations of the
attacks essences. The attacks correspond to that what is called above activities. It
should be noted that all the attacks correspond to the activities of type SS, and have to
be further concretized by the scenarios of attack realization, which also are
represented in terms of attribute grammars [5]. Tab.3 represents the list of
preconditions used in the model of hackers SKB unknown for hackers. Let us note
that he developed case study includes more than 100 different kinds of attacks.

Table 1. List of identifiers of variables of the domain "Computer Networks Attacks"

Identif
ier Goals of attacks Ident

ifier Goals of attacks

X1 <IP-address of network (or host)> X21 <Registry is accessible>
X2 <IP-addresses of active hosts> X24 <e-mail address is known>
X3 <Active ports of a host> X25 <Password is known >
X4 <The type of OS is known > X31 Connection is closed

X14 <Shared Resources are available> X32 <Admin (root) Password is
known>

X15 <Users’ Identifiers are known> X37 <File(s) is (are) deleted>

X16 <Security identifier (SID) is
known> X39 <The logs are cleared>

X19 <Host resources are accessible>
(Password to access resources) X41 <Back doors are created>

Table 2. Names of attacks used in the example

Class of attack Name and content of the attack instance Identifi
er Input Output

DC: Network Ping Sweeps SS1 X1 X2 IH:
Identification of
Hosts STIH: TCP connect scan SS2 X1 X2

SS: TCP SYN scan SS5 X2 X3

SX: TCP Xmas Tree scan SS7 X2 X3 IS: Identification
of Services

SU: :UDP scan SS9 X2 X3

IF: ICMP message quoting SS25 X2 X4

IDOS: Examination of response for DoS attacks
Ping of Death, WinNuke, Teardrop, Land for
detection of a Windows OS type

SS28 X2 X4

RMT: Enumerating NetBIOS Shares with
Rmtshar SS37 X2 X14

IO:
Identification of
OS of the host

LEG: Enumerating NetBIOS Shares with Legion SS45 X2 X14
UE: Users and
groups

FUE: Finger Users Enumeration SS52 X2 X15

ISU: Identifying of Security identifier of User SS49 X2 X16

IAS: Identifying Account with sid2user SS50 X2, X16 X15

UDG: User Data Guessing for Access to the
Registry SS63 X2, X14,

X15 X21

MP: Mailing password and access to a host SS75 X2, X15 X25

GAR: Getting
Access to
Resources

CC: Connection Closing SS81 X2, X15 X31

EP: Escalating
Privileges

UKE: Use of Known Exploits (Ls_messages,
getadmin, sechole, etc.) SS84 X2, X15,

X25 X32

IVR: Integrity
violation

DFR Delete File(s) Realization SS89 X2, X15,
X31

X37

CT: Covering
Tracks

CL: Clearing Logs SS98 X2, X15,
X31

X39

CBD: Creating
Back Doors

CRUA: Creating Rogue User Accounts SS100 X2, X15,
X31

X41

Table 3. List of conditions�

Name Condition Name Condition
C1 Network firewall (host) passes

through icmp-packets echo request
C18 Access to the shared resources

(directory) with Record Permission

C2 Network firewall (host) passes
through tcp-packets

C21 Personal Web server (PWS)

C3 Network firewall (host) passes
through udp-packets

C26 IP-address of an attacking Host is
written to the File .rhost

C5 Network (host) firewall passes
through tcp/ip-packets

C27 Trojan Horse for password stealing
is implanted

C8 Windows (NetBIOS) C24 Windows

C9 Connection “null sessions” (NS) C25 Linux or Unix

C14 Microsoft Remote Registry Service
(RR) is accessible

C28 TCP and UDP ports 135 - 139 and
also 445 (for Win 2000) are open &

C16 Shared files and printers (SFP) С29 Service finger (port 79) is active and
accessible

Fig.2 presents a fragment of the developed case study introduced in Tab.1-Tab.3 in
structured according to the relationships UBX and VXB described in previous section.

4 Formal Specification of Scenario Knowledge Bases

Let us consider briefly formal framework for SKB specification and demonstrate it by
example extracted from the SKB depicted in Fig.2. It is given below in Fig.3. This

framework specifies SKB in terms of attribute formal grammars with Context Free
(CF) kernel, at that each Behavior Model is represented in it as follows:

G BM V V S RA T() , , ,= (3)

(subscript indicated the number of BM is omitted), where)(BMG –grammar, VA –
the set of nonterminals, VT –the set of terminal symbols, S –the set of initial
nonterminals (grammar axioms), and R – the set of attributed productions.

The first and second members of (4) are interpreted as follows: VA ={ }X i –the set

of identifiers of inputs and outputs (goals) of the SKB, and VT ={ }xi -the same
variables if they are assigned particular values. The axioms sense is explained below.

SS52

C5,
 C25,
C29

X15

SS37

C5, C9,
C24

X14

SS45

C5, C9,
C25

SS28

C2

X4

SS25

C2

SS81

C5, C24,
C25,

X2 X1

X31

SS75

C5,
C27

X15 X1

X25

SS60

C5, C16,
C21

X2 X1

X19

SS63

C5, C14,
C18,

X2 X15 X1

X21

SS89

C5

X15 X2 X31

X37

SS84

C5

X25 X2 X1

X32

SS100

C5

X2 X15 X3

X41

SS98

C5
X2

X15 X3

X39

SS49

C5, C8,
C9

X16

SS1

C1

X2

SS2

X1

C2

X4

SS5
C2

SS7

C2

X3

SS9

C3

Fig.2. Fragment of Behavior Model for the domain " Computer network attacks ".
Legend: –goals, –conditions, –ultimate goals, SS89 –activities (processes).

SS50

C8,
C9

Let us explain attributed productions. Let us consider sSBM of the Behavior

Model BM , and represent it in the form of a production with attribute component:

sssi BCX conditionpre X][>←< − (4)

where iX –nonterminal put in correspondence to the output of the Behavior model

Bs , []Bs –attribute component of the production (the name of activity Bs of sSBM),

C–precondition and sX – the vector of inputs of the activity Bs , whose components
are ordered in the manner of increasing of its subscripts.

The union of attributed productions like (5) for all sSBM ∈ BM constitutes the
set R of attribute grammar ()G BM presented in (4).

Let us explain the formal grammar specification of SKB by small fragment of
SKB presented in Fig.3 that is extracted from SKB given in Fig.2. While follow the
above explanations of how attribute formal grammar-based specification of SKB is
built, formal specification of SKB fragment (Fig.3) is is follows:

V A ={ }.,,,,,, 3225211615142 XXXXXXX , VT ={ }.,,,,,, 3225211615142 xxxxxxx

};]63[;]45[;]37[;{)1(151422121421422 XXXSSXXSSXXSSXXXR ←←←←=

};]84[;]75[;;]49[
;]50[;]47[;{)2(

251523215225216

161521522

XXXSSXXXSSXXSSX
XSSXXSSXXXXR

←←←
←←←=

where R(1) and R(2)–the sets of productions specifying the scenario knowledge
bases of the Hacker 1 and 2 respectively (hackers are considered here as coalitions).

Note. Knowing of 3X ("list of active ports of the host") is necessary to success of
implementation of all the attacks presented in Fig.3. To simplify the expressions of
productions in the sets)1(R and)2(R hereinafter

3X is ignored.

In addition to)1(R and)2(R , the following production can be included:

ii Sx ← , i=1,...n, (5)

at that they are included if and only if the goals corresponding to the respective
variables have already been achieved by hackers.

Let us transform the introduced formal grammar-based representation of SKB in
matrix form [7]. Such a representation consists of two components. The first one
(denoted below as X) is the vector whose i-th component is the union of all the chains
inferable from formal grammar ()G BM (4) in case if the i-th axiom iS is used as
the grammar axiom. The second component is a matrix M(X) that in our case (for
attribute grammar ()G BM) is constructed as follows. It comprises n arrows and n
columns like vector X (In the example Fig.3. n=4 for the left SKB and n=5 for the
right one). The matrix represents the current state of coalition knowledge. The initial
state of matrix M, M(X ()0), is formed as follows. In its cell with indexes j,i the
chain []B X X Xk i i ik1 2

... is placed if production []X B X X X Xi k i i i jk
→

1 2
... exists in

grammar G BM(). In other words, this chain is placed in the cell (j,i) if there exists

a production with nonterminal X i in its left part and with terminal X j in its last

position (if variables sX of the activity are ordered in subscript s increasing mode). If
several productions containing the same symbol X j are present in the last position
then all they are placed in the same cell joined by symbol “+” interpreted below as
union of chains. Otherwise, in this cell the symbol of annihilating chain "∅" is placed.

Thus, in terms of the introduced vector X and grammar matrix M(X) the complete
set of the chains that are inferable in formal grammar (4) can be represented as the
result of matrix iterations as follows [7]:

X ()0 ←S, X 1k+ =M(X k)*X k + X k , for k=1, 2, …, (6)
where the symbol “*” is interpreted as chains concatenation.

The remaining question is about how initial vector X ()0 is built. Formally, it is
built by use of production (6), which is always used as first because its components
are axioms. Instantiation of the components of vector X ()0 is carried out as follows. If
the goal ix is not "achieved" in the initial state than the production iS←∅ is used,
otherwise ii Sx ← . In the considered case study all the position of vector X ()0

corresponding to known information about the host to be attacked are assigned as ix .
Let us demonstrate how to build the matrix form of attribute grammar of SKB

based on the grammar built above for SKB presented in Fig.3.

Formal specification of SKB of the hacker 1 in the initial state:

X ()0 (1)=



















∅
∅
∅

2x

, M(X ()0 (1) =



















∅∅∅
∅∅∅∅
∅∅∅+
∅∅∅∅

142XX]63SS[

]45SS[]37SS[(7)

Formal specification of SKB of the hacker 2 in the initial state:

X ()0 (2)=























∅
∅
∅
∅
∅

, M(X ()0 (2))=























∅∅∅∅
∅∅∅∅
∅∅∅∅
∅∅∅
∅∅∅∅∅

152

2

XX]84SS[
X]75SS[

]49SS[
]50SS[]52SS[(8)

5. The Basic Idea of Inference Mechanism

Reasoning in SKB aims at solution, for each coalition, the following task:
Initial state: The set of goals }{ ix already achieved represented by vector X ()0 ;

The set of goals { }
r21 iii x,...x,x to be achieved by coalition(s).

The task: To dynamically (step by step) compute potential scenarios and points of
coordination leading to achievement of the goals set { }

r21 iii x,...x,x .

Therefore, the objective of the reasoning is to dynamically construct potential

strategy of coordinated coalition operation. It is assumed that in the initial state the
coalition can exchange information about their states and the same is true during
operation execution. At that, reasoning results have also to indicate to the coalitions
when and how they need to coordinate their activities. All the steps of reasoning are
analogical. The difference is only in the initial states of coalition(s). We below don't
discuss how the information exchange is organized because this depends mostly on
software design issue. For example, if multi-agent architecture is used for software
implementation then the above problem can be solved by use of shared ontology.

It is assumed that in each step of reasoning and for each coalition the supporting
computer system "knows" current state of this coalition (the set of goals achieved)
and possesses the necessary information concerning some other coalitions. The results
of reasoning step are presented to the coalition in form of the set of admissible
activities it can perform "to go" towards the ultimate goal(s). The coalition decides
what of them and in which order to execute and starts to act. Due to hostile or/and
unpredictable reaction of the environment, certain or all proposed activities can fail.
After completion of activities inferred in SKB, the coalition updates (or not update)
its state by adding new goals achieved by it or by certain other coalitions. The system
updates current state of its SKB and the process it repeated with new "initial state".

In the considered case study each hacker's state is represented in terms of
information available to hackers about the computer network or host under attack.
This information can be obtained either (1) in previous steps of attack, or (2) received
from other hackers, or (3) received by social engineering (reconnaissance) method.

In considered simplified example coordinated attack is performed by two hackers.
Each of them possesses a part of scenario knowledge, which is represented in his
SKB. The ultimate goals of coordinated attack are to achieve 21x ("Registry is

accessible") и 32x ("<Admin (root) Password> is known"). It is assumed that initial state

of the first hacker is 2x (<IP-addresses of active hosts> are known). It is assumed that
hackers don't know how to detect the operating system (OS) type installed on the
host, but some attacks can be only successful if a definite OS (Windows, UNIX, or
Linux) is installed (Fig.3 and Tab.3). These facts are reflected in attack preconditions.
Since hackers do not initially know the type of OS installed, certain attacks can fail.
This is the case when environment (network security software) undesirably reacts on
the hackers' activity. In such cases hackers are forced to search for new continuation
of the attack. SKB helps him to dynamically find such continuations if any and also
supports hackers' information exchange to share known information when necessary.

Let us describe the first step of each of two hackers having initial state X ()0 .
Hackers' SKB are presented in Fig.3. Inference (reasoning) mechanism is realized as
matrix iteration (7) for matrix grammars M(X ()0 (1) and M(X ()0 (2)) presented by
expressions (8) and (9) respectively. These matrices together with vectors of initial
states X ()0 (1) и X ()0 (2) specify initial state of SKBs [7]. Let us demonstrate the first
steps of reasoning by both hackers and explain some specificity of the inference
mechanism implementing reasoning.

Note. The subsequent description of inference mechanism is given in a simplified form
of "data driven forward chaining reasoning", when no special means to improve its
efficiency are used. Fortunately there exist a number of "tricks" allowing noticeably
increase the inference efficiency. Example is alternating "data driven forward chaining
reasoning" with "goal driven backward chaining reasoning", what results in good

efficiency. We don't discuss below the details of rational organization of reasoning
mechanism because this aspect is not the main subject of the paper.

Let us assume that for the host subjected to hackers' attack the following
preconditions are held: C5, C9, C25, C27, C29 (see their interpretations in Tab.3), in
particular, OS Linux is installed in it.
Step 1, Hacker 1. At the starting point, hacker 1 knows IP addresses of active hosts
presented in data structure associated with variable 2x . He selects one of them and,
while using SKB1, infers admissible activities at current step using iterations (7):





















21
)1(

15
)1(

14
)1(

2
)1(

X
X
X
X

=



















∅∅∅
∅∅∅∅
∅∅∅+
∅∅∅∅

142XX]63SS[

]45SS[]37SS[



















∅
∅
∅

2x
+



















∅
∅
∅

2x
=



















∅
∅
+ 22

2

x]45SS[x]37SS[
x

=



















∅
∅
14

2

x
x

,

thus receiving the prompt that he can achieve the goal 14x in two ways, i.e. by use
either activity (attack) SS37 or SS45. These attacks have common preconditions C5
(Network (host) firewall passes through tcp/ip-packets) and C9 ("Connection “null sessions”)
and different ones concerning with the type of OS, namely C24 (OS Windows)–for
attack SS37, and–C25 (OS Unix or Linux)– for attack SS45. However, hacker 1 knows
nothing about OS installed and tries first to execute the attack SS37. It fails because of
OS installed in the host is not Windows and that is why he explores the second variant
inferred in SKB, i.e. attack SS45. This attack is successful and hacker achieves the
goal 14x – access to <Shared Resources> of the host.
Step 1, Hacker 2: The inference step looks as follows:























32

25

16

15

2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅
∅∅∅∅
∅∅∅
∅∅∅∅∅

152

2

XX]84SS[
X]75SS[

]49SS[
]50SS[]52SS[























∅
∅
∅
∅
∅

+























∅
∅
∅
∅
∅

=























∅
∅
∅
∅
∅

This step results in no admissible activity and system can prompt to hacker (We
do not here discuss how this can be done) that to succeed at the first step he needs to
know the IP address of active hosts of the network, 2x . Through shared ontology

hacker 2 is informed that hacker 1 knows 2x and hacker 2 has to coordinate activity
with the former. (In general case this means that the coalition has to coordinate its
activity with other ones.) Hacker 2 asks and receives needed IP address selected by
hacker 1 as the subject of attack. This coordination step is depicted in Fig.3 by dashed
block arrow outgoing from the goal 2x achieved by hacker 1.

Let us attract attention to the following aspect of the inference mechanism: (1) If
the state of a hacker (a coalition) is not updated after an iteration of reasoning (no new
achievable goals are inferred) then hacker (coalition) has to coordinate its activity
with other ones; (2) All activities can fail and in this case it is necessary either to use
coordination or postpone it while waiting help (coordination actions) from other
hacker (coalitions) or changing of the environment state. An alternative is to use other
SKB. An example of admissible course of action can be given based on SKB of

hacker 2. For instance, after achievement of the goal 14x resulting from the first step,

he cannot go forth if the goal 15x is not achieved by hacker 2 and needs either to wait

this event or refuse of attack continuation to achieve the goal 21x .

Assume hacker 2 receives information 2x and undertakes the new attempt:























32

25

16

15

2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅
∅∅∅∅
∅∅∅
∅∅∅∅∅

152

2

XX]84SS[
X]75SS[

]49SS[
]50SS[]52SS[























∅
∅
∅
∅

2x

+























∅
∅
∅
∅

2x

=























∅
∅

2

2

2

x]49SS[
x]52SS[

x

The inference result is that hacker 2 can to undertake attacks [SS52] and [SS49]
which, if successful, potentially allow to achieve the goals 15x (<Users’ Identifiers>

are known>) and 16x (<Security identifier (SID) is known>) respectively. For success of
the first of attacks, [SS52], the precondition C5 (<Network (host) firewall passes through
tcp/ip-packets>), C25 (<OS Unix or Linux>) и С29 (<Service finger (port 79) is active and
accessible>) must be met. The [SS49] attack can be potentially successful if the same
precondition C5 and also C8 (<Windows (NetBIOS)>) and C9 (<Connection “null
sessions”>) are met. If hacker started from [SS49] attack he would fail because
precondition C8 is not met (in the host OS Linux is installed. On the contrary, [SS52]
attack can be successful because it is directed to the case of OS Linux. Let the hacker
2 (for instance, after the second attempt) achieves the goal presented by variable 15x .
Step 2, hacker 1. Before each new step, coalition has to transform its SKB to take into
account the changes of the coalition state. Respectively, before the step 2, hacker has
to transform SKB1 to new state. In general case this is done as follows:
1. Failed activities of the previous step and their arguments are substituted in SKB
matrix by symbol Ø–they cannot be used further in the current scenario.
2. The successful activities are substituted by Ø–there is no need to use them again.
(This is done for convenience only, otherwise the chins will be duplicated.)
3. Nonterminals corresponding to the goals achieved are substituted by the respective
terminal symbols.

While doing the above with SKB1 of the hacker 1, the current state of it is
transformed to the followings:





















21
)2(

15
)2(

14
)2(

2
)2(

X
X
X
X

=



















∅∅∅
∅∅∅∅
∅∅∅
∅∅∅∅

142 xx]63SS[

1 ,)1()1(X =



















∅
∅
14

2

x
x

,

Iteration with the SKB1 matrix prompts to the hacker 1 that he needs coordination
of further activity with the hacker 2 while waiting when the latter achieves the goal

15x . While receiving (if any) 15x (<Users’ Identifiers>) hacker 1 infers via iteration that

the goal 21x can be achieved if only the activity [SS63] is successful:





















21
)2(

15
)2(

14
)2(

2
)2(

X
X
X
X

=



















∅∅∅
∅∅∅∅
∅∅∅∅
∅∅∅∅

142 xx]63SS[

















∅
15

14

2

x
x
x

+



















∅
15

14

2

x
x
x

=



















142

15

14

2

xx]63SS[
x
x
x

,

After the attempt to realize this attack, hacker 1 makes sure that reaction of the
environment (host security means) is negative (the precondition C24 is not held) and
the ultimate goal 21x cannot be achieved it to use the skill represented in SKB1.

Step 2, hacker 2: New state of hacker 2 SKB after attacks of the step 1 is as follows:























)2(
32

)2(
25

2
16

)2(
15

)2(
2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅
∅∅∅∅∅
∅∅∅∅
∅∅∅∅∅

152

2

xx]84SS[
x]75SS[

]50SS[
,)2()1(X =























∅
∅
∅

15

2

x
x

The result of the next iteration with SKB2 is as follows:























)2(
32

)2(
25

2
16

)2(
15

)2(
2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅
∅∅∅∅∅
∅∅∅∅
∅∅∅∅∅

152

2

xx]84SS[
x]75SS[

]50SS[























∅
∅
∅

15

2

x
x

+























∅
∅
∅

15

2

x
x

=























∅

∅

152

15

2

xx]75SS[

x
x

=























∅

∅

25

15

2

x

x
x

He executes the inferred attack, [SS75], that is found out successful because all the
preconditions are met.
Step 3, hacker 2: New state of SKB2 after execution of attack of step 2 is as follows:























)3(
32

)3(
25

)3(
16

)3(
15

)3(
2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅∅
∅∅∅∅∅
∅∅∅∅
∅∅∅∅∅

152 xx]84SS[

]50SS[
,)2()2(X =























∅

∅

25

15

2

x

x
x

Next iteration looks as follows:























)3(
32

)3(
25

)3(
16

)3(
15

)3(
2

X
X
X
X
X

=























∅∅∅∅
∅∅∅∅∅
∅∅∅∅∅
∅∅∅∅
∅∅∅∅∅

152xx]84SS[

]50SS[























∅

∅

25

15

2

x

x
x

+























∅

∅

25

15

2

x

x
x

=























∅

25152

25

15

2

xxx]84SS[
x

x
x

Hacker 2 is capable to realize the [SS84] attack, which is successful because all
the preconditions are held. This means that hacker 2 achieved his ultimate goal of the
coordinated multi-step attack that is the goal 32x –<Admin (root) Password> is known>,
i.e. he got the access to the password of the host administrator.

Let us discuss the reasoning mechanism described by example and some

conclusions. Let us assume that all the preconditions of the coalitions SKBs are held.
For this case it is proved in [2], that (while slightly rephrasing and generalizing the
results of [2]) after no more than n iterations (n is the dimensionality of the vector X),
the process is stopped due to one of the following reasons:
• Either a part or all ultimate goals are achieved. In this case all the positions of

vector X ()k , k≤ n, corresponding to ultimate goals are assigned as terminals. The
chains of intermediate activities with their arguments constitute the dynamically
inferred scenario (represented in sequential–parallel form) of the ultimate goals
achievement. Some position of the vector X ()k can remain to be assigned symbol
Ø, because not all goals appearing in SKB can be achieved.

• It is established that all or some goals are unachievable (coalition operation
cannot achieve some or all ultimate goals) from the initial state of coalitions, e.g.
in the above described case the goal 21x is unachievable.

The above statements are also held for the SKB with preconditions. Indeed,
preconditions represent reactions of the environment. If to delete from SKB the nodes
corresponding to activities, whose preconditions are not held for the task at hand,
together with respective edges then the dimensionality of vector X specifying the
resulting SKB cannot increase and therefore the complexity cannot also increase.

6. Conclusion

The paper objective is to present a new formal framework for specification of
scenario knowledge bases supporting coalition operation dynamic planning, execution
and coordination. It is based on formal grammar framework represented is a special,
matrix, form enriched by attribute component and use of substitution operation
allowing hierarchical specification of the scenario world. Although proposed
framework is based on the ideas presented in the papers [1, 2], it contains a number of
novelties oriented to their use for representation of scenario knowledge, dynamic
inference of situational scenarios and coordination of activities of coalitions executing
joint operation. It can be also used in multi-agent area for coordination of weakly
coupled autonomous agents operating in a hostile or/and unpredictable environment.

The peculiarities of the framework are that it (1) is naturally integrated with the
efficient inference mechanism that can be implemented in both "data driven forward
chaining reasoning" and "goal driven backward chaining reasoning" modes; (2)
allows to dynamically infer scenarios of coordinated activities of coalitions executing
joint operation; (3) takes into account a hostile and unpredictable nature of
environment reactions on activities of coalitions; (4) allows hierarchical specification
of scenarios; (5) allows to determine the coordination points of coalitions.

The proposed formal framework can be simply extended to the cases when the
environment reaction is of probabilistic or fuzzy nature and used for coordination and
control of coalition operations as well as framework for simulation purposes.

We are now at the beginning of implementation and thus future works will be
manifold. The first task is to in-depth development of algorithms aiming at combined
use of both "data driven forward chaining reasoning" and "goal driven backward
chaining reasoning". The second one is development of a software tool destined for
design and implementation of scenario knowledge bases and efficient inference
mechanisms. The third task is exploration of the framework properties and its

validation on the basis of different applications of both coalition operation and multi-
agent system research areas.

References

[1] N. Chomsky and M.Schutzenberge. Algebraic Theory of Context Free Languages.
Chapter in Cybernetical Collection of Articles, New Series, 1966, vol.3, 118-161
(Russian Editions)

[2] M.P.Georgeff and A.S.Rao. BDI Agents: From Theory to Practice. In Proceedings

of the First International Conference on Multi-Agent Systems (ed. V. Lesser).
AAAI Press/The MIT Press, 1995, 312-319

[3] V.Glushkov, A.Zeitlin, E.Yustchenko. Algebra, Languages, Programming.

Naukova Dumka, Kiyev, 1975 (in Russian)

[4] V.Gorodetsky and A.Tarakanov. Computations Planning Based on Inference in

Attribute Context Free Grammars. In A.Slissenko (Ed.) Mathematical Methods of
Development and Analysis of Algorithms. Leningrad, Nauka, 1990, 37-48 (in
Russian).

[5] V.Gorodetski and I.Kotenko. Attacks against Computer Network: Formal

Grammar-based Framework and Simulation Tool. In Proceedings of the 5
International Conference "Recent Advances in Intrusion Detection", Lecture
Notes in Computer Science, vol. 2516, Springer Verlag, pp.219-238, 2002.

[6] W. van der Hoek. Logical Foundation of Agent-based Computing. Multi-agent

Systems and Applications. EASSS 2001, Lecture Notes in Artificial Intelligence,
vol.2086, 2001, 50-73

[7] D.Rosenkranz. Matrix Equationsand Normal Form of Context Free Grammars.

Journal of ACM, 1967, vol.14, 501-507.

[8] A Tarakanov. Matrix Method for Automatic Synthesis of Programs. Izvesija VUZ,

Priborostroeniye, vol.31, #10, 1988, 21-25 (in Russian).

[9] M.Wooldridge. Reasoning about Rational Agents. MIT Press, Cambridge, MA,

2000.

